The vertex of the function f(x) exists (1, 5), the vertex of the function g(x) exists (-2, -3), and the vertex of the function f(x) exists maximum and the vertex of the function g(x) exists minimum.
<h3>How to determine the vertex for each function is a minimum or a maximum? </h3>
Given:
and

The generalized equation of a parabola in the vertex form exists

Vertex of the function f(x) exists (1, 5).
Vertex of the function g(x) exists (-2, -3).
Now, if (a > 0) then the vertex of the function exists minimum, and if (a < 0) then the vertex of the function exists maximum.
The vertex of the function f(x) exists at a maximum and the vertex of the function g(x) exists at a minimum.
To learn more about the vertex of the function refer to:
brainly.com/question/11325676
#SPJ4
Answer:
Value of h greater than 5.4 will make inequality false.
Step-by-step explanation:
This question is incomplete; here is the complete question.
The Jones family has saved a maximum of $750 for their family vacation to the beach. While planning the trip, they determine that the hotel will average $125 a night and tickets for scuba diving are $75. The inequality can be used to determine the number of nights the Jones family could spend at the hotel 750 ≥ 75 + 125h. What value of h does NOT make the inequality true?
From the given question,
Per night expense (expected) = $125
If Jones family stays in the hotel for 'h' days then total expenditure on stay = $125h
Charges for scuba diving = $75
Total charges for stay and scuba diving = $(125h + 75)
Since Jones family has saved $750 for the vacation trip so inequality representing the expenses will be,
125h + 75 ≤ 750
125h ≤ 675
h ≤ 
h ≤ 5.4
That means number of days for stay should be less than equal to 5.4
and any value of h greater than 5.4 will make the inequality false.
Answer:
128
Step-by-step explanation:
Method A.
The volume of the prism is 2 cubic units.
Each cube has side length of 1/4 unit.
The volume of each cube is (1/4)^3 cubic unit.
The volume of each cube is 1/64 cubic unit.
To find the number of cubes that fit in the prism, we divide the volume of the prism by the volume of one cube.
(2 cubic units)/(1/64 cubic units) =
= 2/(1/64)
= 2 * 64
= 128
Method B.
Imagine that the prism has side lengths 1 unit, 1 unit, and 2 units (which does result in a 2 cubic unit volume.) Since each cube has side length 1/4 unit, then you can fit 4 cubes by 4 cubes by 8 cubes in the prism. Then the number of cubes is: 4 * 4 * 8 = 128
Answer:
x=48
Step-by-step explanation:
32+4=36+12+x=48
solve for x
x=48