I got the one that truck was coming up and
<span>Rectangles have a couple of properties that help distinguish them from other parallelograms. By studying these properties, we will be able to differentiate between various types of parallelograms and classify them more specifically. Keep in mind that all of the figures in this section share properties of parallelograms. That is, they all have</span>
Answer:
No, mn is not even if m and n are odd.
If m and n are odd, then mn is odd as well.
==================================================
Proof:
If m is odd, then it is in the form m = 2p+1, where p is some integer.
So if p = 0, then m = 1. If p = 1, then m = 3, and so on.
Similarly, if n is odd then n = 2q+1 for some integer q.
Multiply out m and n using the distribution rule
m*n = (2p+1)*(2q+1)
m*n = 2p(2q+1) + 1(2q+1)
m*n = 4pq+2p+2q+1
m*n = 2( 2pq+p+q) + 1
m*n = 2r + 1
note how I replaced the "2pq+p+q" portion with r. So I let r = 2pq+p+q, which is an integer.
The result 2r+1 is some other odd number as it fits the form 2*(integer)+1
Therefore, multiplying any two odd numbers will result in some other odd number.
------------------------
Examples:
- 3*5 = 15
- 7*9 = 63
- 11*15 = 165
- 9*3 = 27
So there is no way to have m*n be even if both m and n are odd.
The general rules are as follows
- odd * odd = odd
- even * odd = even
- even * even = even
The proof of the other two cases would follow a similar line of reasoning as shown above.