1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
3 years ago
5

Part 5

Mathematics
1 answer:
garri49 [273]3 years ago
4 0

Haha

I appreciate it I guess.

You might be interested in
Evaluate 1/3 - 5/6<br><br> I NEED THIS ASAP!!!
MissTica

Answer:

-1/2

Step-by-step explanation:

2/6 - 5/6= -3/6

= -1/2

4 0
2 years ago
Read 2 more answers
What is the correlation
RideAnS [48]

Answer:

type=positive

Correlation refers to the degree of correspondence or relationship between two variables.

8 0
3 years ago
Find the Fourier series of f on the given interval. f(x) = 1, ?7 &lt; x &lt; 0 1 + x, 0 ? x &lt; 7
Zolol [24]
f(x)=\begin{cases}1&\text{for }-7

The Fourier series expansion of f(x) is given by

\dfrac{a_0}2+\displaystyle\sum_{n\ge1}a_n\cos\frac{n\pi x}7+\sum_{n\ge1}b_n\sin\frac{n\pi x}7

where we have

a_0=\displaystyle\frac17\int_{-7}^7f(x)\,\mathrm dx
a_0=\displaystyle\frac17\left(\int_{-7}^0\mathrm dx+\int_0^7(1+x)\,\mathrm dx\right)
a_0=\dfrac{7+\frac{63}2}7=\dfrac{11}2

The coefficients of the cosine series are

a_n=\displaystyle\frac17\int_{-7}^7f(x)\cos\dfrac{n\pi x}7\,\mathrm dx
a_n=\displaystyle\frac17\left(\int_{-7}^0\cos\frac{n\pi x}7\,\mathrm dx+\int_0^7(1+x)\cos\frac{n\pi x}7\,\mathrm dx\right)
a_n=\dfrac{9\sin n\pi}{n\pi}+\dfrac{7\cos n\pi-7}{n^2\pi^2}
a_n=\dfrac{7(-1)^n-7}{n^2\pi^2}

When n is even, the numerator vanishes, so we consider odd n, i.e. n=2k-1 for k\in\mathbb N, leaving us with

a_n=a_{2k-1}=\dfrac{7(-1)-7}{(2k-1)^2\pi^2}=-\dfrac{14}{(2k-1)^2\pi^2}

Meanwhile, the coefficients of the sine series are given by

b_n=\displaystyle\frac17\int_{-7}^7f(x)\sin\dfrac{n\pi x}7\,\mathrm dx
b_n=\displaystyle\frac17\left(\int_{-7}^0\sin\dfrac{n\pi x}7\,\mathrm dx+\int_0^7(1+x)\sin\dfrac{n\pi x}7\,\mathrm dx\right)
b_n=-\dfrac{7\cos n\pi}{n\pi}+\dfrac{7\sin n\pi}{n^2\pi^2}
b_n=\dfrac{7(-1)^{n+1}}{n\pi}

So the Fourier series expansion for f(x) is

f(x)\sim\dfrac{11}4-\dfrac{14}{\pi^2}\displaystyle\sum_{n\ge1}\frac1{(2n-1)^2}\cos\frac{(2n-1)\pi x}7+\frac7\pi\sum_{n\ge1}\frac{(-1)^{n+1}}n\sin\frac{n\pi x}7
3 0
2 years ago
Jejxjdndnndndbdbdnsnbdbdb
amm1812

I have no clue ...I'm nt so good in maths
3 0
2 years ago
An art gallery sells paintings at .35 per square inch
VashaNatasha [74]

1 foot = 12 inches

 2 x 12 = 24 +3 = 27 inches

3 x 12 = 36 +5 = 41 inches

27*41 = 1107 square inches

1107 * 0.35 = $387.45

6 0
2 years ago
Other questions:
  • What is the answer to <br> 5 (x - 1) + 3 = 13
    12·2 answers
  • How do you do this plzz help
    7·1 answer
  • Next week your math teacher is giving a chapter test. the test will consist of 35 questions. some problems are worth 2 points in
    9·1 answer
  • Lisa has 12 more stickers than John, and together they have 60 stickers. What is the ratio of the number of Lisa’s stickers to t
    14·1 answer
  • What is the total quotient of 6476 divided by 12
    13·1 answer
  • Identify the diameter using the following radius: 16 ft.
    10·1 answer
  • From a point on a circle, two perpendicular chords are drawn. One is 6 cm from the center and the other one is 3 cm from the cen
    11·2 answers
  • HELLLLLLPPPP PLEASEEEEEEEEEEE
    14·1 answer
  • Ok for some reason when I search it it’s restricted so plz help ;-;<br><br> 5 + (-11) + (-11)
    13·2 answers
  • Please help me!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!