Recall the wave equation,

where c is the speed of the wave (m/s), f is the frequency of the wave (Hz) and λ is the wavelength of the wave (m).

so
<h3><u>Answer;</u></h3>
C. Supersaturated
<h3><u>Explanation</u>;</h3>
- Solutions are homogeneous mixtures that are created by mixing a solute and a solvent. Solute is the substance present in smaller amounts that dissolves in a solvent such as water which is the substance present in larger amount.
- A solution, can be<u> unsaturated, saturated or supersaturated. An unsaturated solution</u> is a solution that contains less solute that can be dissolved, it doesn't contain the maximum amount of solute.
- <u>A saturated solution</u> is a solution containing the maximum amount of solute that can be dissolved at a given temperature. Any additional solute will remain undissolved in the container.
- <u>A supersaturated solution</u> is a solution created when a solution is carefully cooled because it contains more solute than the solubility allows.
electric field lines are graphical presentation of electric field intensity
It is the graphical way to represent the electric field variation
If we draw the tangent to electric field line then it will give the direction of net electric field at that point
So whenever we draw the electric field lines of a charge distribution then it will always follow this basic properties
here we will always follow these basic properties of field lines
now as we can see that here two positive charges are placed nearby so the electric field must be like it can not intersect at any point because at intersection of two lines the direction of electric field not defined
As we have two directions of tangents at that point
So here the incorrect presentation is the intersection of two field lines which is not possible