The solution for this problem:
Given:
f1 = 0.89 Hz
f2 = 0.63 Hz
Δm = m2 - m1 = 0.603 kg
The frequency of mass-spring oscillation is:
f = (1/2π)√(k/m)
k = m(2πf)²
Then we know that k is constant for both trials, we have:
k = k
m1(2πf1)² = m2(2πf2)²
m1 = m2(f2/f1)²
m1 = (m1+Δm)(f2/f1)²
m1 = Δm/((f1/f2)²-1)
m 1 = 0.603/
(0.89/0.63)^2 – 1
= 0.609 kg or 0.61kg or 610 g
Answer:
a. 8.96 m/s b. 1.81 m
Explanation:
Here is the complete question.
a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.
What is her "takeoff" speed v
0
?
b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.
If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?
a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.
So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.
b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45
R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.
So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m
Answer:
If the frequency of the motion of a simple harmonic oscillator is doubled , then maximum speed of the oscillator changes by the factor 2
Explanation:
We know that in a simple harmonic oscillator the maximum speed is given by
= ![Aw](https://tex.z-dn.net/?f=Aw)
Here A is amplitude which is constant , so from above equation we see that maximum speed is directly proportional to
of the oscillation .
Since ![w = 2 \pi f](https://tex.z-dn.net/?f=w%20%3D%202%20%5Cpi%20f)
= 2
Where
is the maximum speed when frequency is doubled .
They use x-rays to diagnose broken bones