How would you describe the behavior of particles in a solid?
Answer:
Yes energy does take up space.
Explanation:
Every form of energy has a defining characteristic; sound is the vibration of molecules, electricity is the movement of electrons, and mass is the thing that take up space.
Answer:
The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Explanation:
Given that,
Wavelength = 400 nm
Energy 
We need to calculate the longest wavelength of light that is capable of ejecting electrons from that metal
Using formula of energy


Put the value into the formula



Hence, The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.
Let
a = average acceleration,
t = time taken to attain final speed.
Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²
Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s
Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).
Answer:
18m/s^2
Explanation:
Vf = Vi + at
t = distance/ average velocity
(120 + 0)/2 = 60 (average velocity)
400m/60m/s = 20/3 s
insert into first equation:
120 = 0 + a(20/3)
360 = 20a
18 = a
HOPE THIS HELPS!!!