Answer:
Step-by-step explanation:
First confirm that x = 1 is one of the zeros.
f(1) = 2(1)^3 - 14(1)^2 + 38(1) - 26
f(1) = 2 - 14 + 38 - 26
f(1) = -12 + 38 = + 26
f(1) = 26 - 26
f(1) = 0
=========================
next perform a long division
x -1  || 2x^3 - 14x^2 + 38x - 26 || 2x^2 - 12x + 26
           2x^3 - 2x^2
           ===========
                     -12x^2 + 28x
                      -12x^2 +12x
                      ==========
                                   26x -26
                                   26x - 26
                                  ========
                                       0
Now you can factor 2x^2 - 12x + 26
                                  2(x^2 - 6x + 13)
The discriminate of the quadratic is negative. (36 - 4*1*13) = - 16
So you are going to get a complex result.
x = -(-6) +/- sqrt(-16)
      =============
                  2
x  = 3 +/- 2i
f(x) = 2*(x - 1)*(x - 3 + 2i)*(x - 3 - 2i)
The zeros are
1
3 +/- 2i