The dissociation of formic acid is:

The acid dissociation constant of formic acid,
is:
![k_a = \frac{[HCOO^{-}] [H^{+}]}{HCOOH}](https://tex.z-dn.net/?f=%20k_a%20%3D%20%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%20%20%5BH%5E%7B%2B%7D%5D%7D%7BHCOOH%7D%20%20%20%20%20)
Rearranging the equation:
![\frac{[HCOO^{-}]}{[HCOOH]} = \frac{k_a}{[H_+]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%7D%7B%5BHCOOH%5D%7D%20%3D%20%5Cfrac%7Bk_a%7D%7B%5BH_%2B%5D%7D%20)
pH = 2.75
![pH = -log[H^{+}]](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%5BH%5E%7B%2B%7D%5D%20)
![[H^{+}]= 10^{-2.75} = 1.78 \times 10^{-3}](https://tex.z-dn.net/?f=%20%5BH%5E%7B%2B%7D%5D%3D%2010%5E%7B-2.75%7D%20%3D%201.78%20%5Ctimes%2010%5E%7B-3%7D%20)


Substituting the values in the equation:
![\frac{[HCOO^{-}]}{[HCOOH]} = \frac{k_a}{[H_+]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%7D%7B%5BHCOOH%5D%7D%20%3D%20%5Cfrac%7Bk_a%7D%7B%5BH_%2B%5D%7D%20)
![\frac{[HCOO^{-}]}{[HCOOH]} = \frac{1.78\times 10^{-4}}{1.78\times 10^{-3}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%7D%7B%5BHCOOH%5D%7D%20%3D%20%5Cfrac%7B1.78%5Ctimes%2010%5E%7B-4%7D%7D%7B1.78%5Ctimes%2010%5E%7B-3%7D%7D%20%20%20)
Hence, the ratio is
.
Answer:
B. Conductivity can be used to calculate the salinity of the water.
I am 100% sure this is the correct answer :)
Answer:
1. unless you live right around the block, distance from home to school should be in kilometers.
2. centimeters
3. millimeters
4. meters (the average is about 2 meters)
We are not 8n your. lass we need mor detail??
The heat lost by copper(ii) sulfate is equal to heat absorbed by water since the total energy in the system remains constant according to the law of conservation of energy.
<h3>How can the number of moles be determined?</h3>
The number of moles of a substance is determined using the formula below:
- Number of moles = mass/molar mass
Assuming the mass of copper(ii) sulfate used is <em>Mc</em>, number of moles of copper(ii) sulfate used is:
- Moles of copper(ii) sulfate = <em>Mc</em>/159.60 moles
The heat absorbed by water is calculated using the formula below:
- Quantity of Heat, H = mass × specific heat capacity × temperature change
mass of water <em>=</em><em> </em> 10 g
Let temperature change be <em>Tc</em>
Heat<em> </em>absorbed<em> </em>by water = 10 × 4.186 × Tc = 41
86Tc
The change in internal energy, ΔU of copper(ii) sulfate, is given as:
where:
Q = heat absorbed by water
W = work done by or on the system
The enthalpy of the reaction is given as:
- ΔH= energy released or absorbed/moles of copper (ii) sulfate
Therefore, according to the law of conservation of energy, the total energy in the system remains constant.
Learn more about internal energy change at: brainly.com/question/14126477