A how our planets and moons formed
Actually, they're not. There's a group of stars and constellations arranged
around the pole of the sky that's visible at any time of any dark, clear night,
all year around. And any star or constellation in the rest of the sky is visible
for roughly 11 out of every 12 months ... at SOME time of the night.
Constellations appear to change drastically from one season to the next,
and even from one month to the next, only if you do your stargazing around
the same time every night.
Why does the night sky change at various times of the year ? Here's how to
think about it:
The Earth spins once a day. You spin along with the Earth, and your clock is
built to follow the sun . "Noon" is the time when the sun is directly over your
head, and "Midnight" is the time when the sun is directly beneath your feet.
Let's say that you go out and look at the stars tonight at midnight, when you're
facing directly away from the sun.
In 6 months from now, when you and the Earth are halfway around on the other
side of the sun, where are those same stars ? Now they're straight in the
direction of the sun. So they're directly overhead at Noon, not at Midnight.
THAT's why stars and constellations appear to be in a different part of the sky,
at the same time of night on different dates.
Answer:
t_total = 6.99 s
Explanation:
It asks us how long it takes to hear the sound, for this we must look for the time (t₁) it takes for the sound to reach the microphone, the time it takes for the video signal (t₂) to reach the television and the time (₃) it takes for the TV sound to reach us, so the total delay time is
t_total = t₁ + t₂ + t₂
we look for t1, it indicates that the distance x = 22m
v = x / t
t = x / v
t₁ = 22/343
t₁ = 6.41 10-2 s
time t₂
t₂ = 4500 103/3 108
t₂ = 1.5 10-5 s
time t₃
t₃ = 2/343
t₃ = 5.83 10⁻³
Total time is
t_total = t₁ + t₂ + t₃
t_total = 6.41 10⁻² + 1.5 10⁻⁵ + 0.583 10⁻²
t_total = 6.99 s
Answer:
c
Explanation:
cuz its informing the length of 5 and weight on 20N
Answer:
The impulse on the object is 60Ns.
Explanation:
Impulse is defined as the product of the force applied on an object and the time at which it acts. It is also the change in the momentum of a body.
F = m a
F = m()
⇒ Ft = m( - )
where: F is the dorce on the object, t is the time at which it acts, m is the mass of the object, is its initialvelocity and is the final velocity of the object.
Therefore,
impulse = Ft = m( - )
From the question, m = 3kg, = 0m/s and = 20m/s.
So that,
Impulse = 3 (20 - 0)
= 3(20)
= 60Ns
The impulse on the object is 60Ns.