Answer:
1) a block going down a slope
2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c) W = ΔK, d) ΔU = ΔK
Explanation:
In this exercise you are asked to give an example of various types of systems
1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.
2)
a) rolling a ball uphill
In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact
W = ΔU + ΔK + ΔE
b) in this system work is transformed into internal energy
W = ΔE
c) There is no friction here, therefore the work is transformed into kinetic energy
W = ΔK
d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy
ΔU = ΔK
The initial temperature of the bar is 25. To get to the t temperature you need to add (t-25) degrees Celsius.
for 1 degree................... 7 Joules
y given degree........ p Joules
p=7y
In our case y=(t-25) .
h(t) = 7(t-25) which is the final answer.
Three times larger I think.
"<span>a layer in the earth's stratosphere at an altitude of about 6.2
miles (10 km) containing a high concentration of ozone, which absorbs
most of the ultraviolet radiation reaching the earth from the sun."
Hope this helps!
</span>