-6 (negative six) is the answer
<h2>
Answer and Explanation to questions 13,14,15</h2>
13)
as given in the question.
14)
Since Y is the midpoint of XZ. So, Y will divide XZ in equal halves into XY and YZ.
15) 
and
. So, 
<h2>
Answer and Explanation to questions 16,17,18</h2>
∠3 is supplementary to ∠1 means: ∠3 + ∠1 = 180°
And, according to figure ∠1 + ∠2 = 180° as ∠1 and ∠2 form a straight line.
∠3 + ∠1 = 180° .............(i)
∠1 + ∠2 = 180° .............(ii)
subtracting equation (i) and (ii) will give ∠3 = ∠2 ..........(iii)
15) ∠3 is supplementary to ∠1 as given in the question
16) ∠2 is supplementary to ∠1 as shown be equation (ii)
18) ∠3 ≅ ∠2 as shown by equation (iii)
<h2>
Answer and Explanation to questions 19</h2>
∠3 and ∠4 form a straight line. Therefore, ∠3 + ∠4 = 180° .......(i)
∠4 and ∠5 form a straight line. Therefore, ∠4 + ∠5 = 180° .......(ii)
subtracting equation (i) and (ii)
∠3 + ∠4 - (∠4 + ∠5) = 180°-(180°)
∠3 + ∠4 - ∠4 - ∠5 = 180°-180°
∠3 - ∠5 = 0
∴ ∠3 = ∠5 (Hence Proved)
Answer:
P = 0.4812
Step-by-step explanation:
First, we need to use here two expressions and then do the calculations.
The first one is the conditional probability which is:
P(B|A) = P(A∩B)/P(A) (1)
The second expression to use has relation with the Bayes's theorem which is the following:
P(D|C) = P(C|D)*P(D) / P(C|D)*P(D) + P(C|d)*P(d) (2)
Now, the expression (2) is the one that we will use to calculate the probability of a selected random bicyclist who tests positive for steroids.
So, in this case, we will call C for positive and D that is using steroids and d is the opposite of d, which means do not use steroids.
Then, the probabilities are the following:
P(D) = 8% or 0.08
P(C|D) = 96% or 0.96
P(C|d) = 9% or 0.09
P(d) = 1 - 0.08 = 0.92
With these data, let's replace in expression 2
P(D|C) = 0.96 * 0.08 /0.96 * 0.08 + 0.09*0.92
P(D|C) = 0.0768 / 0.1596
P(D|C) = 0.4812 or 48.12%
1 cup = 0.25 quarts,
12+15+5 = 32 cups:
32 * .25 = 8 quarts