A) Isolate y in both inequalities
1) x + y ≥ 4 => y ≥ 4 - x
2) y < 2x - 3
B) Draw the lines for the following equalities:
1) y = 4 - x
2) y = 2x - 3
C) Shade the regions of solutions
1) The region that is over the line y = 4 - x
2) The region that is below the line y = 2x - 3
The solution is the intersection of both regions; this is the sector between both lines that is to the right of the intersection point, including the portion of the very line y = 4 - x and excluding the portion of the very line y = 2x - 3
Answer:
E
Step-by-step explanation:
We can see that section E of the graph increases, but unlike section B it is much longer and, therefore, increases more slowly.
Hope this helps friend.
Extraneous solutions are the values that we get when solving equations which aren't really solutions to the equation.
<h3>
What are extraneous solutions?</h3>
Your information is incomplete. Therefore, an overview will be given. An extraneous solution is the root of a transformed equation which is not a root of the original equation since it was excluded from the domain of the original equation.
The reason extraneous solutions exist is simply that some operations produce extra answers, and these operations are a part of the path to solving the problem.
Learn more about equations on:
brainly.com/question/2972832
Answer:
p is the variable
Step-by-step explanation:
a variable is a letter that represents an unspecified number.