Answer:
- 43uj
Explanation:
The solution is in the attached file below
All of them at the same time if they start off at the same temperature and same volume
Answer:
a. 192 m/s
b. -17,760 kPa
Explanation:
First let's write the flow rate of the liquid, using the following equation:
Q = A*v
Where Q is the flow rate, A is the cross section area of the pipe (A = pi * radius^2) and v is the speed of the liquid. The flow rate in both parts of the pipe (larger radius and smaller radius) needs to be the same, so we have:
a.
A1*v1 = A2*v2
pi * 0.02^2 * 12 = pi * 0.005^2 * v2
v2 = 0.02^2 * 12 / 0.005^2
v2 = 192 m/s
b.
To find the pressure of the other side, we need to use the Bernoulli equation: (600 kPa = 600000 N/m2)
P1 + d1*v1^2/2 = P2 + d1*v2^2/2
Where d1 is the density of the liquid (for water, we have d1 = 1000 kg/m3)
600000 + 1000*12^2/2 = P2 + 1000*192^2/2
P2 = 600000 + 72000 - 1000*192^2/2
P2 = -17760000 N/m2 = -17,760 kPa
The speed in the smaller part of the pipe is too high, the negative pressure in the second part means that the inicial pressure is not enough to maintain this output speed.
Answer:
Its density decreases, and its volume increases
Explanation:
Density is defined as Mass/Volume. What happens when water transforms into ice is that its density decreases because the volume the molecules now occupy increases.
The denominator of the rational expression
is now larger (while the numerator stays the same), so the quotient gives a smaller number.
<em>Kinetic (mechanical) energy</em>