We assume the composite figure is a cone of radius 10 inches and slant height 15 inches set atop a hemisphere of radius 10 inches.
The formula for the volume of a cone makes use of the height of the apex above the base, so we need to use the Pythagorean theorem to find that.
h = √((15 in)² - (10 in)²) = √115 in
The volume of the conical part of the figure is then
V = (1/3)Bh = (1/3)(π×(10 in)²×(√115 in) = (100π√115)/3 in³ ≈ 1122.994 in³
The volume of the hemispherical part of the figure is given by
V = (2/3)π×r³ = (2/3)π×(10 in)³ = 2000π/3 in³ ≈ 2094.395 in³
Then the total volume of the figure is
V = (volume of conical part) + (volume of hemispherical part)
V = (100π√115)/3 in³ + 2000π/3 in³
V = (100π/3)(20 + √115) in³
V ≈ 3217.39 in³
Answer:
Please see the attached pictures for full solution.
Answer:
option D is true.
Step-by-step explanation:
The right-angled triangle is shown.
From the right-angled triangle,
The angle Ф = 60°
We know that the trigonometric ratio
tan Ф = opposite / adjacent
Thus,
tan 60 = 4 / n
√3 = 4/n
n = 4/√3
Thus,
n = 4/√3
= (4 × √3) / (√3 × √3)
= 4√3 / 3
Thus,
n = 4√3 / 3
Using Pythagorean theorem
m = √n²+4²





Thus,
Therefore, option D is true.
Answer:
The answer is $150
Step-by-step explanation:
hope that helps
Solutions: $100x.50=50
$100+$50= $150
By definition, if two lines share the same gradient, they are said to be parallel. So, we know for this equation, it must have a gradient of 1/2.
Now, since the point (-6, 4) passes through the line, we know it must satisfy the equation. Since we have a gradient/slope and a point, we can use the point-gradient form:

, where

represents the points being passed through.


