1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tresset [83]
3 years ago
9

For the sequence an=3n-5 what is the value of a10

Mathematics
2 answers:
-BARSIC- [3]3 years ago
7 0

Answer:  The required value of a_{10} is 25.

Step-by-step explanation:  We are given a sequence whose n-th term is given as follows :

a_n=3n-5.

We are to find the value of a_{10}.

To find the value of  a_{10}., we need to put n = 10 in the given expression.

So, substituting n = 10 in the given expression, we get

a_{10}=3\times 10-5=30-5=25.

Thus, the required value of a_{10} is 25.

liq [111]3 years ago
6 0

Answer: The value of a_{10}=25

Step-by-step explanation:

The given sequence : a_n=3n-5 .

To find the value of a_10 , need to substitute the value n=10 in the above equation , we will get

a_{10}=3(10)-5

Open Parenthesis ,

a_{10}=3\times10-5

Solve product ,

\Rightarrow\ a_{10}=30-5

Solve subtraction,

\Rightarrow\ a_{10}=25

Therefore , the value of a_{10}=25

You might be interested in
−(−49) = −49 true or false?
vova2212 [387]

I hope this helps you

false

cause two negative numbers multiple must be positive

(-1).(-49)

+49

5 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
2 years ago
What is the answer to this?​
Pie

Answer:

the third one

Step-by-step explanation:

p n p is p

p n q is p

q n q is q

q n p is p

p: true

q: false

got it?

6 0
3 years ago
Please help ASAP Due very soon
MissTica

Answer:

y = -3/4 + 4

Step-by-step explanation:

use rise over run to find slope

6 0
3 years ago
HELP ASAP
Alex787 [66]

<span>v(x)=(s/t)
= (3x - 6) / (-3x+6)
= [3(x-2)] / [-3(x-2)] --> 3 is factored out
= 1/-1 </span>---> common terms are cancelled out. 
= -1 ---> This is the simplified formula.

To find the domain, we equate the denominator to 0.
-3x+6 = 0
3x = 6
x = 2
Domain: all values except 2.

w(x)=(t/s)(x)
= (-3x+6)x / (3x-6)
= [-3x(x-2)] / [3(x-2)] --> 3 is factored out
= -x --> The common terms are cancelled out. This is the simplified formula.

Solving for domain:
3x-6 = 0
3x = 6
x = 2
Domain: all values except 2.

4 0
3 years ago
Other questions:
  • Estimate the value of this expression by rounding each number to the nearest unit
    9·1 answer
  • What is the slope of the line that contains the point -6,-7 and -6,2
    6·2 answers
  • Researchers wanted to evaluate whether a certain herb improved memory in elderly adults as measured by objective tests. To do? t
    10·1 answer
  • Alex wants to have $10,000 for a car in 8 years. Alex finds an account that earns 15% interest, compounded monthly. How
    15·1 answer
  • How many packages of pencils should Phillip buy?
    12·1 answer
  • Mrs. Baker has 20 minutes to do her laundry before her children come back from school
    8·1 answer
  • Find x d says 68 degrees
    12·1 answer
  • Linsay was going to visit her grandmother shop at the mall and then return home the route she took was in the shape of a triangl
    7·1 answer
  • Solve.<br><br> 0.25=−5+0.75+1.28
    8·1 answer
  • A cylinder with 3 radius and and height is 2 inches what is the volume?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!