Answer:
(f + g)(x) = x² - x + 6
Step-by-step explanation:
Step 1: Define
f(x) = x² + 1
g(x) = 5 - x
Step 2: Find (f + g)(x)
(f + g)(x) = x² + 1 + 5 - x
(f + g)(x) = x² - x + 6
Answer:
Gold, Orange, White, Blue
Step-by-step explanation:
Orange: 11.875%
Blue: 62.5%
White: 15.625%
Gold: 10%
Answer:
Yes, \sqrt{2}(\sqrt{3.5} + 2\sqrt{5} )
Step-by-step explanation:
By roots property, the roots can be re-write as multiplications or division, like this:
![\sqrt[n]{a} . \sqrt[n]{b} =\sqrt[n]{ab}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20.%20%5Csqrt%5Bn%5D%7Bb%7D%20%3D%5Csqrt%5Bn%5D%7Bab%7D)
Here, we can re-write both roots:
and 
Now we have:

And we can take out the common expression:
⇒ Answer