1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zheka24 [161]
3 years ago
10

Sharon spends 24 hours on her tablet each week. How many hours does she

Mathematics
2 answers:
melisa1 [442]3 years ago
5 0
Sharon spends 1248 because there are 52 weeks in a year and 24 * 52 = 1248
mamaluj [8]3 years ago
4 0

Answer:

She spends 1,248 hours on her tablet.

Step-by-step explanation:

24 hours each week is given. Since there are 52 weeks in 1 year multiply 52 x 24= 1,248

You might be interested in
It takes Dwight 1 1/3 hours to run the sunshine trail. Mike 3 1/5 hours to walk the same trail. How many times as long does it t
Anit [1.1K]

For this case we convert the mixed numbers to fractions:

Dwight:1 \frac {1} {3} = \frac {3 * 1 + 1} {3} = \frac {4} {3} = 1.33

Mike:3 \frac {1} {5} = \frac {5 * 3 + 1} {5} = \frac {16} {5} = 3.2

It is observed, that in fact, Mike takes more time to travel the road.

We subtract to know how much more time it takes Mike:

\frac {16} {5} - \frac {4} {3} = \frac {48-20} {15} = \frac {28} {15}

So, Mike takes \frac {28} {15} hours more than Dwight to walk the road.

Answer:

Mike takes\frac {28} {15}hours longer than Dwight to walk the road.

7 0
2 years ago
Simplify 5 √16 + 12 √54 - 3 √8
USPshnik [31]

20+36. l6-6/2

v. v

decimal form

99.69634936

8 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
What is the solution set of 7x 2 + 3x = 0?<br><br> {0, 3/7}<br> {0, -3/7}<br> {0, -4/7}
Burka [1]

Answer:

the answer is b when we have two positives it makes a negitive therefore its b

Step-by-step explanation:

4 0
3 years ago
Which values are outliers ?
Minchanka [31]
5.8 0.8 5.9 6.1 and 10.9 are all correct answers.

Hope this Helped!

;D
:D
:)
;)
XD
:'D
4 0
3 years ago
Read 2 more answers
Other questions:
  • ( 4 - 5y )+ -(2y - 16)
    12·2 answers
  • Niles and bob sailed at the same time for the same length of time. Niles’ sailboat traveled 16 miles at a speed of 8 mph, while
    5·1 answer
  • Sphere A has a diameter of 12 and is dilated by a scale factor of one half to create sphere B. What is the ratio of the volume o
    8·1 answer
  • PLLLLZ I WILL GIVE BRAINIEST ANSWER AND 72 PTS
    6·1 answer
  • Otto used 6 cups of whole wheat flour and x cups of white flour in the recipe. What is the equation that can be used
    9·1 answer
  • Can anyone answer this please
    13·1 answer
  • below is a map of trans neighborhood which statements about the locations are true select all that apply brainly
    9·1 answer
  • Need help with this also please
    13·1 answer
  • A data set is normally distributed with a mean of 27 and a standard deviation of 3.5. Find the z-score for a value of 25, to the
    9·1 answer
  • What is the answer to this question out of the options given
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!