1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
13

A quarterback throws a football to a teammate. The football is 6.5ft above the ground when it leaves the quarterback's hand. His

teammate catches it 3.5s later, at a height above the ground of 5 ft. Projectile motion formula h(t) = -16t2 + vt + h0 h0 = 6.5 v = ? h = 5 when t = 3.5 Determine the value of v, rounded to the nearest whole number.
Mathematics
2 answers:
Nuetrik [128]3 years ago
6 0

Answer: v= 56 ft per second


Step-by-step explanation:

Given: A quarterback throws a football to a teammate.

Projectile motion formula is given by :-

h(t)=-16t^2+vt+h_0, where h_0=6.5

Now, to find  v at h=5 and t=3.5, substitute these values in the above equations, we get

5=-16(3.5)^2+v(3.5)+6.5\\\Rightarrow5=-16(12.25)+3.5v+6.5\\\Rightarrow5=-196+6.5+3.5v\\\Rightarrow\ 5=-189.5+3.5v\\\Rightarrow\ 3.5v=5+189.5\\\Rightarrow\ 3.5v=194.5\\\Rightarrow\ v=55.57142\approx56



JulijaS [17]3 years ago
3 0

Answer:

The value of v, rounded to the nearest whole number = 56 ft/s

Step-by-step explanation:

The equation of Projectile motion formula is

        h(t) = -16t² + vt + h₀

We have h₀ = 6.5

Substituting

         h(t) = -16t² + vt + 6.5

h = 5 when t = 3.5, that is h(3.5) = 5

Substituting

         h(3.5) = -16 x 3.5² + v x 3.5 + 6.5 = 5

          3.5v =  194.5

              v = 55.57 ft/s = 56 ft/s

The value of v, rounded to the nearest whole number = 56 ft/s

You might be interested in
It costs $100 to rent the bowling alley, plus $4 per person. The cost for any number (n) of people can be found using the expres
Nataly [62]
Answer = $160

Using the formula 100+4n, we need to substitute 15 with n. Therefore making the formula, 100 + 4×15. 4×15 = 60. 60+100= $160.

-Hope it helps!
8 0
3 years ago
Read 2 more answers
A parabola has its focus at (1,2) and its directrix is y=-2. the equation of this parabola could be
Oksi-84 [34.3K]
<span>x^2/8 - x/4 + 1/8 = 0 A parabola is defined as the set of all points such that each point has the same distance from the focus and the directrix. Also the parabola's equation will be a quadratic equation of the form ax^2 + bx + c. So if we can determine 3 points on the parabola, we can use those points to calculate the desired equation. First, let's draw the shortest possible line from the focus to the directrix. The midpoint of that line will be a point on the desired parabola. Since the slope of the directrix is 0, the line will have the equation of x=1. This line segment will be from (1,2) to (1,-2) and the midpoint will be ((1+1)/2, (2 + -2)/2) = (2/2, 0/2) = (1,0). Now for the 2nd point, let's draw a line that's parallel to the directrix and passing through the focus. The equation of that line will be y=2. Any point on that line will have a distance of 4 from the directrix. So let's give it an x-coordinate value of (1+4) = 5. So another point for the parabola is (5,2). And finally, if we subtract 4 instead of adding 4 to the x coordinate, we can get a third point of 1-4 = -3. So that 3rd point is (-3,2). So we now have 3 points on the parabola. They are (1,0), (5,2), and (-3,2). Let's create some equations of the form ax^2 + bx + c = y and then substitute the known values into those equations. SO ax^2 + bx + c = y (1) a*1^2 + b*1 + c = 0 (2) a*5^2 + b*5 + c = 2 (3) a*(-3)^2 + b*(-3) + c = 2 Let's do the multiplication for those expressions. So (4) a + b + c = 0 (5) 25a + 5b + c = 2 (6) 9a - 3b + c = 2 Equations (5) and (6) above look interesting. Let's subtract (6) from (5). So 25a + 5b + c = 2 - 9a - 3b + c = 2 = 16a + 8b = 0 Now let's express a in terms of b. 16a + 8b = 0 16a = -8b a = -8b/16 (7) a = -b/2 Now let's substitute the value (-b/2) for a in expression (4) above. So a + b + c = 0 -b/2 + b + c = 0 And solve for c -b/2 + b + c = 0 b/2 + c = 0 (8) c = -b/2 So we know that a = -b/2 and c = -b/2. Let's substitute those values for a and c in equation (5) above and solve for b. 25a + 5b + c = 2 25(-b/2) + 5b - b/2 = 2 -25b/2 + 5b - b/2 = 2 2(-25b/2 + 5b - b/2) = 2*2 -25b + 10b - b = 4 -16b = 4 b = -4/16 b = -1/4 So we now know that b = -1/4. Using equations (7) and (8) above, let's calculate a and c. a = -b/2 = -(-1/4)/2 = 1/4 * 1/2 = 1/8 c = -b/2 = -(-1/4)/2 = 1/4 * 1/2 = 1/8 So both a and c are 1/8. So the equation for the parabola is x^2/8 - x/4 + 1/8 = 0 Let's test to make sure it works. First, let's use an x of 1. x^2/8 - x/4 + 1/8 = y 1^2/8 - 1/4 + 1/8 = y 1/8 - 1/4 + 1/8 = y 1/8 - 2/8 + 1/8 = y 0 = y And we get 0 as expected. Let's try x = 2 x^2/8 - x/4 + 1/8 = y 2^2/8 - 2/4 + 1/8 = y 4/8 - 1/2 + 1/8 = y 4/8 - 1/2 + 1/8 = y 1/2 - 1/2 + 1/8 = y 1/8 = y. Let's test if (2,1/8) is the same distance from both the focus and the directrix. The distance from the directrix is 1/8 - (-2) = 1/8 + 2 = 1/8 + 16/8 = 17/8 The distance from the focus is d = sqrt((2-1)^2 + (1/8-2)^2) d = sqrt(1^2 + -15/8^2) d = sqrt(1 + 225/64) d = sqrt(289/64) d = 17/8 And the distances match again. So we do have the correct equation of: x^2/8 - x/4 + 1/8 = 0</span>
4 0
3 years ago
PLS HELPP PLSS this homework is so hard
Illusion [34]
So you should label the x axis and y axis like I did then you use the formula!

6 0
2 years ago
Read 2 more answers
What is the error in the flow chart
sweet-ann [11.9K]

there is no flow chart

7 0
3 years ago
Read 2 more answers
WILL GIVE BRAINLIEST!!!!!
dimaraw [331]

1. f(x)=x²+10x+16

Use the formula to find the vertex = (-b/2a, f(-b/2a)) , here in the above equation a=1(As, a>0 the parabola is open upward), b=10. by putting the values.

-b/2a = -10/2(1) = -5

f(-b/2a)= f(-5)= (-5)²+10(-5)+16= -9

So, Vertex = (-5, -9)

Now, find y- intercept put x=0 in the above equation. f(0)= 0+0+16, we get point (0,16).

Now find x-intercept put y=0 in the above equation. 0= x²+10x+16

x²+10x+16=0 ⇒x²+8x+2x+16=0 ⇒x(x+8)+2(x+8)=0 ⇒(x+8)(x+2)=0 ⇒x=-8 , x=-2

From vertex, y-intercept and x-intercept you can easily plot the graph of given parabolic equation. The graph is attached below.

2. f(x)=−(x−3)(x+1)

By multiplying the factors, the general form is f(x)= -x²+2x+3.

Use the formula to find the vertex = (-b/2a, f(-b/2a)) , here in the above equation a=-1(As, a<0 the parabola is open downward), b=2. by putting the values.

-b/2a = -2/2(-1) = 1

f(-b/2a)= f(1)=-(1)²+2(1)+3= 4

So, Vertex = (1, 4)

Now, find y- intercept put x=0 in the above equation. f(0)= 0+0+3, we get point (0, 3).

Now find x-intercept put y=0 in the above equation. 0= -x²+2x+3.

-x²+2x+3=0 the factor form is already given in the question so, ⇒-(x-3)(x+1)=0 ⇒x=3 , x=-1

From vertex, y-intercept and x-intercept you can easily plot the graph of given parabolic equation. The graph is attached below.

3. f(x)= −x²+4

Use the formula to find the vertex = (-b/2a, f(-b/2a)) , here in the above equation a=-1(As, a<0 the parabola is open downward), b=0. by putting the values.

-b/2a = -0/2(-1) = 0

f(-b/2a)= f(0)= −(0)²+4 =4

So, Vertex = (0, 4)

Now, find y- intercept put x=0 in the above equation. f(0)= −(0)²+4, we get point (0, 4).

Now find x-intercept put y=0 in the above equation. 0= −x²+4

−x²+4=0 ⇒-(x²-4)=0 ⇒ -(x-2)(x+2)=0 ⇒x=2 , x=-2

From vertex, y-intercept and x-intercept you can easily plot the graph of given parabolic equation. The graph is attached below.

4. f(x)=2x²+16x+30

Use the formula to find the vertex = (-b/2a, f(-b/2a)) , here in the above equation a=2(As, a>0 the parabola is open upward), b=16. by putting the values.

-b/2a = -16/2(2) = -4

f(-b/2a)= f(-4)= 2(-4)²+16(-4)+30 = -2

So, Vertex = (-4, -2)

Now, find y- intercept put x=0 in the above equation. f(0)= 0+0+30, we get point (0, 30).

Now find x-intercept put y=0 in the above equation. 0=2x²+16x+30

2x²+16x+30=0 ⇒2(x²+8x+15)=0 ⇒x²+8x+15=0 ⇒x²+5x+3x+15=0 ⇒x(x+5)+3(x+5)=0 ⇒(x+5)(x+3)=0 ⇒x=-5 , x= -3

From vertex, y-intercept and x-intercept you can easily plot the graph of given parabolic equation. The graph is attached below.

5. y=(x+2)²+4

The general form of parabola is y=a(x-h)²+k , where vertex = (h,k)

if a>0 parabola is opened upward.

if a<0 parabola is opened downward.

Compare the given equation with general form of parabola.

-h=2 ⇒h=-2

k=4

so, vertex= (-2, 4)

As, a=1 which is greater than 0 so parabola is opened upward and the graph has minimum.

The graph is attached below.

5 0
3 years ago
Read 2 more answers
Other questions:
  •  9
    15·1 answer
  • Michael breeds chickens and ducks.
    11·2 answers
  • I am so stuck on this. I need your help. <br>​
    12·1 answer
  • Will qamar have enough lacquer to cover the floor below? Please help I have been stuck on this for three days!!!
    14·1 answer
  • Ms. Franklin earns $ 15 an hour. For this year, she will be paid for 40 hours each week for 52 weeks. How much should Ms. Frankl
    11·1 answer
  • What is the answer to this math question?
    8·2 answers
  • Helppppppppppppppppppp
    8·1 answer
  • What is the volume help please
    12·2 answers
  • Simplify (i^24)^<img src="https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D" id="TexFormula1" title="\frac{1}{2}" alt="\frac{1}{2}"
    5·1 answer
  • PLEASE HELP I NEED TO GET THIS DONE FAST
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!