<u>Answer:</u> The theoretical yield of the lithium chlorate is 1054.67 grams
<u>Explanation:</u>
To calculate the mass for given number of moles, we use the equation:

Actual moles of lithium chlorate = 9.45 moles
Molar mass of lithium chlorate = 90.4 g/mol
Putting values in above equation, we get:

To calculate the theoretical yield of lithium chlorate, we use the equation:

Actual yield of lithium chlorate = 854.28 g
Percentage yield of lithium chlorate = 81.0 %
Putting values in above equation, we get:

Hence, the theoretical yield of the lithium chlorate is 1054.67 grams
Answer:
d. A water particle and an air particle
Explanation:
The force of gravity (F) between two objects of masses m1 and m2 and separated by a distance r is given as:

where G is the gravitational constant
This force is therefore, directly proportional to the masses and inversely related to the distance between them.
Based on the given options, since the masses of the water and air particles are very small (masses of earth, moon and sun is relatively huge), the gravitational force between them would be negligible and difficult to measure.
Answer:
B) 1270 torr
Explanation:
Given data
- Initial volume (V₁): 5.00 L
- Initial pressure (P₁): 760 torr
- Final volume (V₂): 3.00 L
We can find the final pressure using Boyle's law.
P₁ × V₁ = P₂ × V₂
P₂ = P₁ × V₁/V₂
P₂ = 760 torr × 5.00 L/3.00 L
P₂ = 1.27 × 10³ torr = 1270 torr
The final pressure is 1270 torr.
Answer:
c
the cycling of water in and out of the atmosphere
Answer:
Magma hot spot.
Explanation:
Hot spots stay always the same location because they are in the mantle, not in the crust. So, that's why hotspots stay while plates are moving over them.