Answer:
Number of particles = 2.0 g*(6.0 x 10^23 particles/mol) / 20.18 g/mol
Option C is correct
Explanation:
Step 1: Data give
Mass of Ne = 2.0 grams
Molar mass of neon = 20.18 g/mol
Number of Avogadro = 6.0 *10^23 /mol
Step 2: Calculate number of moles of neon
Moles Ne = Mass of ne / Molar mass of ne
Moles Ne = 2.0 / 20.18 g/mol
Moles Ne = 0.099 moles
Step 3: Calculate nulber of particles
Number of particles = 6.022*10^23 / mol * 0.099 moles = 5.96 *10^22
Number of particles = 6.022*10^23 * (2.0g/ 20.18g/mol)
Number of particles = 2.0 g*(6.0 x 10^23 particles/mol) / 20.18 g/mol
Option C is correct
Answer:
O lowering the temperature of the system
Answer:

Explanation:
The equation for density is:

We plug in the given values:


Explanation:
I can give you some examples;
1) water
2) biomass
3)Soil
4) forest...
I hope this will help you
The amount
per 100 g is:
38.7 %
calcium = 38.7g Ca / 100g compound = 38.7g
19.9 %
phosphorus = 19.9g P / 100g compound = 19.9g
41.2 %
oxygen = 41.2g O / 100g compound = 41.2g
The molar amounts of calcium,
phosphorus and oxygen in 100g sample are calculated by dividing each element’s
mass by its molar mass:
Ca = 38.7/40.078
= 0.96
P = 19.9/30.97
= 0.64
O = 41.2/15.99
= 2.57
C0efficients
for the tentative empirical formula are derived by dividing each molar amount
by the lesser value that is 0.64 and in this case, after that multiply wih 2.
Ca = 0.96 /
0.64 = 1.5=1.5 x 2 = 3
P = 0.64 /
0.64 = 1 = 1x2= 2
O = 2.57 /
0.64 = 4= 4x2= 8
Since, the
resulting ratio is calcium 3, phosphorus 2 and oxygen 8
<span>So, the
empirical formula of the compound is Ca</span>₃(PO₄)₂