1) Carbon-13:
Proton-6 Neutron-7 Electron-6
2)Atomic mass of element X:
(55*10+56*20+57*70)/100=56.6
Force acting on the body when the body is at rest the net formals is given
Answer:
The solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Explanation:
Step 1: Given data
The volume of water sample = 46.0 mL.
The weight of the mineral compound X after evaporation, drying, and washing = 0.87 g.
Step 2: Calculate the solubility of X in water
46.00 mL of water sample contains 0.87 g of the mineral compound X.
To calulate how many grams of the mineral compound 1.0 mL of water sample contains:
0.87 g/46.0 mL = 0.0189 g.
This means the solubility of the mineral compound X in the water sample is 0.0189 g/mL.
The answer is potassium. It would be 4, and for neon would be 2. Just total which row of the periodic table you are on. The "L" tells you whether the highest-energy electron is in an "s" orbital (L=0) or a "p" orbital (L=1) or a "d" orbital (L=2) or an "f" orbital (L=3). The way in which these orbitals are filled is: for each of the first three rows (up to argon), two electrons in the "s" orbital are filled first, then 6 electrons in the "p"orbitals. The row where the potassium also starts with filling the "s" orbital at the new "n" level (4) but then goes back to satisfying up the "d" orbitals of n=3 before it seals up the "p"s for n=4.
Answer:
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Explanation:
Equating coefficients, you get ...
aBa₃(PO₄)₂ +bSiO₂ ⇒ cP₄O₁₀ +dBaSiO₃
For Ba: 3a = d
For P: 2a = 4c
For O: 8a +2b = 10c +3d
For Si: b = d
__
Expressing everything in terms of b and c, we get ...
d = b
a = b/3 = 2c
From the second, b = 6c, so we have ...
a = 2c
b = 6c
c = c
d = 6c
And we can write the equation with c=1 as ...
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃