Here we have to get the
of the reaction at 520 K temperature.
The
of the reaction is 1.705 atm
We know the relation between
and
is
, where
= The equilibrium constant of the reaction in terms of partial pressure,
= The equilibrium constant of the reaction in terms of concentration and N = number of moles of gaseous products - Number of moles of gaseous reactants.
Now in this reaction, PCl₃ + Cl₂ ⇄ PCl₅
Thus number of moles of gaseous product is 1, and number of moles of gaseous reactants are 2. Thus N = |1 - 2| = 1 mole
The given value of
is 4.0×10⁻²
The molar gas constant, R = 0.082 L. Atm. mol⁻¹. K⁻¹ and temperature, T = 520 K.
On plugging the values in the equation we get,

Or,
= 1.705 atm
Thus, the
of the reaction is 1.705 atm
The metalloids are mostly concentrated in groups 14, 15, and 16. (Some simpler charts will show them as 4A, 5A, and 6A - take a look at the top of the periodic table your class uses to double-check).
If you like my answer, please vote me a 'brainliest' - trying to improve my rank :-)
Answer:
None
Step-by-step explanation:
A high pH is caused by an excess of hydrogen ions over hydroxide ions.
Hydrogen ions are so small that they pass through the pores of an ordinary filter.
Thus, ordinary filtration has no effect on the pH of water.
Explanation:
here's the answer to your question about