1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastova [34]
3 years ago
14

A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks along the x-axis from the spotlight toward the bui

lding at a speed of 1.8 m/s, which is taken as the given dx/dt, how fast is the length of his shadow on the building decreasing when he is 4 m from the building?

Mathematics
1 answer:
Sedbober [7]3 years ago
8 0

Answer:

0.675 m/s

Step-by-step explanation:

Let height of shadow= y,CD=x

Height of man=2 m

Speed of man= \frac{dx}{dt}=1. 8 m/s

\triangle ABD\sim\triangle ECD

Therefore, \frac{AB}{EC}=\frac{BD}{CD}

\frac{y}{2}=\frac{12}{x}

xy=24

Differentiate w.r.t t

x\frac{dy}{dt}+y\frac{dx}{dt}=0

x\frac{dy}{dt}=-y\frac{dx}{dt}

\frac{dy}{dt}=-\frac{y}{x}\frac{dx}{dt}

When the man is 4 m from  the building

Then, we have x=12-4=8 m

\frac{dx}{dt}=1.8 m/s

Substitute the values in above equation then, we get

8y=24

y=\frac{24}{8}=3

Substitute the values then we get

\frac{dy}{dt}=-\frac{3}{8}\times 1.8=-0.675 m/s

Hence, the length of his shadow on the building decreasing at the rate 0.675 m/s.

You might be interested in
Boys height: 5 ft 6 inches<br> Boys shadow: 8 ft<br> Tree Ht: ?<br> Tree shadow: 46 ft
igor_vitrenko [27]

Answer:

43.6

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
What does the ratio of the circumference to the diameter represent? Explain
snow_tiger [21]
That is the exact representation of the constant π.  By definition:

π=C/d, where C is the circumference of a circle and d is the diameter.
6 0
3 years ago
What value added to x^2+2x would complete the square?
svetlana [45]
D is the only one which would make sense :)
7 0
2 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
2(3 x5-8)-4x2 (8-6+2)
4vir4ik [10]

Answer:

-18

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Can you help me with the Anabella question pls
    11·2 answers
  • ᴄᴀɴ ꜱᴏᴍᴇᴏɴᴇ ʜᴇʟᴘ ᴍᴇ ᴀꜱᴀᴘ ᴘʟꜱ?
    14·2 answers
  • Write in word form 7x10,000+5x10+4x1
    15·2 answers
  • Need help simplifying
    7·1 answer
  • PLEASE HELP ME!?!?!​
    14·1 answer
  • Which property of equality is represented?<br> 2(x + 3y) = 2(x + 3y)
    13·1 answer
  • Besides phone numbers, what are the other categorical variables in your survey? (The survey asks for family size, the kind of pe
    11·1 answer
  • Combine these radicals.
    13·1 answer
  • A stone fell from the top of a cliff into the ocean.
    10·1 answer
  • BUILD PERSEVERANCE Find the values of x and y. List your answers in ascending order.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!