Answer:
See the explanation.
Step-by-step explanation:
We are given the function f(x) = x² + 2x - 5
Zeros :
If f(x) = 0 i.e. x² + 2x - 5 = 0
The left hand side can not be factorized. Hence, use Sridhar Acharya formula and
and
⇒ x = -3.45 and 1.45
Y- intercept :
Putting x = 0, we get, f(x) = - 5, Hence, y-intercept is -5.
Maximum point :
Not defined
Minimum point:
The equation can be expressed as (x + 1)² = (y + 5)
This is an equation of parabola having the vertex at (-1,-5) and axis parallel to + y-axis
Therefore, the minimum point is (-1,-5)
Domain :
x can be any real number
Range:
f(x) ≥ - 6
Interval of increase:
Since this is a parabola having the vertex at (-1,-5) and axis parallel to + y-axis.
Therefore, interval of increase is +∞ > x > -1
Interval of decrease:
-∞ < x < -1
End behavior :
So, as x tends to +∞ , then f(x) tends to +∞
And as x tends to -∞, then f(x) tends to +∞. (Answer)
Answer:
72
Step-by-step explanation:
substitiute the value of p =8(9)
8x9=72
Answer:
C. 30+18x
Step-by-step explanation:
6x5=30
6x3=18
30+18x
Answer:
a)
Mean = sum of all numbers in dataset / total number in dataset
Mean = 8130/15 = 542
Median:
The median is also the number that is halfway into the set.
For median, we need to sort the data and then find the middle number which in our case is 546. Below is the sorted data
486 516 523 523 529 534 538 546 548 551 552 558 566 574 586
Standard Deviation (SD). Here X represents dataset and N= count of numbers in data
As per the SD formula, which is Sqrt ( sum (X_i - Meanx(X))/(N-1))
SD= 25.082
2) Formula for coefficient of skewness using Pearson's method (using median) is,
SK = 3* ( Mean (X) - Median(X))/(Standard Deviation) = 3*(542-546)/25.082 = -0.325
3) coefficient of skewness using the software method is also same which is -0.325