Answer:
P(O and O) =0.1296
P=0.3778
Step-by-step explanation:
Given that
blood phenotypes in a particular population
A=0.48
B=0.13
AB=0.03
O=0.36
As we know that when A and B both are independent that
P(A and B)= P(A) X P(B)
The probability that both phenotypes O are in independent:
P(O and O)= P(O) X P(O)
P(O and O)= 0.36 X 0.36 =0.1296
P(O and O) =0.1296
The probability that the phenotypes of two randomly selected individuals match:
Here four case are possible
So
P=P(A and A)+P(B and B)+P(AB and AB)+P(O and O)
P=0.48 x 0.48 + 0.13 x 0.13 + 0.03 x 0.03 + 0.36 x 0.36
P=0.3778
To find the cofactor of
![A=\left[\begin{array}{ccc}7&5&3\\-7&4&-1\\-8&2&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%265%263%5C%5C-7%264%26-1%5C%5C-8%262%261%5Cend%7Barray%7D%5Cright%5D)
We cross out the Row and columns of the respective entries and find the determinant of the remaining
matrix with the alternating signs.
























Therefore in increasing order, we have;

Answer:
5.4 hr i think
Step-by-step explanation:
It is A because I did 100 times 200 and I got 200,000
Answer:
i wish i could help you but...
Step-by-step explanation:
I don't know the answer to this question. If you have any other questions on your work i could help you..