It's a projectile near the earth under the influence of gravity only.
Answer:
1.75 / 2 = 0.875 m
Explanation:
Provided the mirror is vertical and you are standing upright.
It could be most any altitude if the mirror is allowed any orientation.
Complete question:
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.
Answer:
The exit velocity is 629.41 m/s
Explanation:
Given;
initial temperature, T₁ = 1200K
initial pressure, P₁ = 150 kPa
final pressure, P₂ = 80 kPa
specific heat at 300 K, Cp = 1004 J/kgK
k = 1.4
Calculate final temperature;

k = 1.4

Work done is given as;

inlet velocity is negligible;

Therefore, the exit velocity is 629.41 m/s
Answer:
Workdone = 600 Kilojoules
Explanation:
Given the following data:
Time = 8 seconds
Power = 75,000 Watts
Distance = 58 m
To find the work done;
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
Thus, work done is given by the formula;
Workdone = power * time
Workdone = 75000 * 8
Workdone = 600,000 = 600 KJ
Assuming the the car is travelling to the right (→):




The information we know:



Using one of the equations of motion:




