Answer:

Explanation:
given,
mass of the weight = 8 Kg
distance = 0.55 m
angle below horizontal = 30°
torque about shoulder




torque about his shoulder join is equal to 
Answer:
B) Pressure on the scale, not registered as weight.
Explanation:
This is because energy (derived from weight) becomes compiled on the tips of your toes, and therefore does not increase your weight, but simply the pressure at a smaller point
Answer:
D because those are both concerning.
Answer:
E= -3.166 cosωt V
Explanation:
Given that
I = Imax sinωt
L= 8.4 m H
Imax= 4 A
f = ω/2π = 60.0 Hz
ω = 120π rad/s
We know that self induce E given as




E= -3166.72 cosωt m V
E= -3.166 cosωt V
This is the induce emf.
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:
