Medium stars become dwarf stars, large stars become either neutron (pulsar) stars or black holes
Answer:
Correct sentence: gravitational potential energy of the mass on the hook.
Explanation:
The mechanical energy of a body or a physical system is the sum of its kinetic energy and potential energy. It is a scalar magnitude related to the movement of bodies and to forces of mechanical origin, such as gravitational force and elastic force, whose main exponent is Hooke's Law. Both are conservative forces. The mechanical energy associated with the movement of a body is kinetic energy, which depends on its mass and speed. On the other hand, the mechanical energy of potential origin or potential energy, has its origin in the conservative forces, comes from the work done by them and depends on their mass and position. The principle of conservation of energy relates both energies and expresses that the sum of both energies, the potential energy and the kinetic energy of a body or a physical system, remains constant. This sum is known as the mechanical energy of the body or physical system.
Therefore, the kinetic energy of the block comes from the transformation in this of the gravitational potential energy of the suspended mass as it loses height with respect to the earth, keeping the mechanical energy of the system constant.
Answer:
Explanation:
Given
mass of archer 
Average force 
extension in arrow 
Work done to stretch the bow with arrow


This work done is converted into kinetic Energy of arrow

where v= velocity of arrow



(b)if arrow is thrown vertically upward then this energy is converted to Potential energy




Answer:
The coefficient of static friction is 0.29
Explanation:
Given that,
Radius of the merry-go-round, r = 4.4 m
The operator turns on the ride and brings it up to its proper turning rate of one complete rotation every 7.7 s.
We need to find the least coefficient of static friction between the cat and the merry-go-round that will allow the cat to stay in place, without sliding. For this the centripetal force is balanced by the frictional force.

v is the speed of cat, 

So, the least coefficient of static friction between the cat and the merry-go-round is 0.29.