Answer:
Explanation:
Let v be the velocity acquired by electron in electric field
V q = 1/2 m v²
V is potential difference applied on charge q , m is mass of charge , v is velocity acquired
2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²
v² = 844 x 10¹²
v = 29.05 x 10⁶ m /s
Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .
Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron
= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶
= 79.02 x 10⁻¹³ N .
Minimum force will be zero when electron moves along the direction of magnetic field .
Exercise is the activity and fitness is a lifestyle and done with time
Answer:
Total impulse =
= Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.

Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:

The final momentum of the car is given as:

Therefore, the impulse is given as:

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.
Answer:
vf=94.4 m/s
Explanation:
acceleration is the final velocity minus initial velocity divided by time
a = (vf-vi)/t
Given:
a= 14.2 m/s^2
vi= 0 (at rest)
t = 6.6
Solve for vf
a = (vf-vi)/t
a*t=vf-vi
(14.2)*(6.6)=vf - 0
vf=94.4 m/s