Number of moles of CO2 =
Mass /Ar
= 50.2 / (12 + 32)
1.14 mols
For every 1 mol of gas, there will be
24000 cm^3 of gas
Vol. = 1.14 x 24 dm^3
= 27.36 dm^3
Explanation:
Mg(s) + Cr(C2H3O2)3 (aq)
Overall, balanced molecular equation
Mg(s) + Cr(C2H3O2)3(aq) --> Mg(C2H3O2)3(aq) + Cr(s)
To identify if an element has been reduced or oxidized, the oxidation number is observed in both the reactant and product phase.
An increase in oxidation number denotes that the element has been oxidized.
A decrease in oxidation number denotes that the element has been reduced.
Oxidation number of Mg:
Reactant - 0
Product - +3
Oxidation number of Cr:
Reactant - +3
Product - 0
Note: C2H3O2 is actually acetate ion; CH3COO- The oxidatioon number of C, H and O do not change.
Oxidized : Mg
Reduced : Cr
Answer:
Ksp = 1.07x10⁻²¹
Explanation:
Molar solubility is defined as moles of solute can be dissolved in 1L.
Ksp for NiS is defined as:
NiS(s) ⇄ Ni²⁺(aq) + S²⁻(aq)
Ksp = [Ni²⁺] [S²⁻]
As molar solubility is 3.27x10⁻¹¹M, concentration of [Ni²⁺] and [S²⁻] is 3.27x10⁻¹¹M for both.
Replacing:
Ksp = [3.27x10⁻¹¹M] [3.27x10⁻¹¹M]
<em>Ksp = 1.07x10⁻²¹</em>
<em></em>
Answer:
10.6 g CO₂
Explanation:
You have not been given a limiting reagent. Therefore, to find the maximum amount of CO₂, you need to convert the masses of both reactants to CO₂. The smaller amount of CO₂ produced will be the accurate amount. This is because that amount is all the corresponding reactant can produce before it runs out.
To find the mass of CO₂, you need to (1) convert grams C₂H₂/O₂ to moles (via molar mass), then (2) convert moles C₂H₂/O₂ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams (via molar mass). *I had to guess the chemical reaction because the reaction coefficients are necessary in calculating the mass of CO₂.*
C₂H₂ + O₂ ----> 2 CO₂ + H₂
9.31 g C₂H₂ 1 mole 2 moles CO₂ 44.0095 g
------------------ x ------------------- x ---------------------- x ------------------- =
26.0373 g 1 mole C₂H₂ 1 mole
= 31.5 g CO₂
3.8 g O₂ 1 mole 2 moles CO₂ 44.0095 g
------------- x -------------------- x ---------------------- x -------------------- =
31.9988 g 1 mole O₂ 1 mole
= 10.6 g CO₂
10.6 g CO₂ is the maximum amount of CO₂ that can be produced. In other words, the entire 3.8 g O₂ will be used up in the reaction before all of the 9.31 g C₂H₂ will be used.