Answer:
96 m/s.
Explanation:
Distance equals speed x time,
12 x 8, so the distance is 96 m/s.
Answer:
When hydrogen gas combines with nitrogen to form Ammonia the following chemical reaction will take place. Our equilibrium reaction will be N2(g) + 3H2(g) ⇔ 2NH3(g) + Heat. In this case, Hydrogen and nitrogen react together to form ammonia.
Explanation:
From a Chemistry perspective it is the electron at 1/1800th the mass of a proton or neutron.
Both of you are overlooking a pretty big component of the question...the Group I cation isn't being dissociated into water. We're testing the solubility of the cation when mixed with HCl. And this IS a legitimate question, seeing as our lab manual is the one asking.
<span>By the way, the answer you're looking for is "Because Group I cations have insoluble chlorides". </span>
<span>"In order...to distinguish cation Group I, one adds HCl to a sample. If a Group I cation is present in the sample, a precipitate will form." </span>
Answer:
The energy of attraction between the cation and anion is 1.231 X 10⁻¹¹ J
Explanation:
Let the charge on the cation be q₁
Also let the charge on the anion be q₂
A cation q₁ with a valence of 1, has a charge of 1 X 1.602×10⁻¹⁹C = 1.602×10⁻¹⁹C
An anion q₂ with a valence of 3, has a charge of 3 X 1.602×10⁻¹⁹C = 4.806 ×10⁻¹⁹C
The distance between the two charges is 7.5nm = 7.5 X10⁻⁹m
Energy of attraction = 
Where k is coulomb's constant = 8.99 X 10⁹ Nm₂/C₂
Energy of attraction = 
Energy of attraction = 1.231 X 10⁻¹¹ J
Therefore, the energy of attraction between the cation and anion is 1.231 X 10⁻¹¹ J