Answer,
For example, silver ion can be precipitated with hydrochloric acid to yield solid silver chloride. Because many cations will not react with hydrochloric acid in this way, this simple reaction can be used to separate ions that form insoluble chlorides from those that do not.
So we know that the equation for density is:

where D is the density, m is the mass in grams, and V is the volume in mL.
So since we know two of the variables, mass and density, we can solve for the volume:



Therefore, the volume of this urine sample is 144.12mL.
Answer:
#2 is melting ice and #3 is radiation
Explanation:
hope this helped
Answer:
A. ![K=\frac{[N_2O]^2}{[N_2]^2[O_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BN_2O%5D%5E2%7D%7B%5BN_2%5D%5E2%5BO_2%5D%7D)
Explanation:
Hello there!
In this case, for us to figure out the appropriate equilibrium expression, it will be firstly necessary for us to recall the law of conservation of mass which states that the equilibrium constant of an equilibrium chemical reaction is written by dividing the products and reactants and including the stoichiometric coefficients as exponents. In such a way, for the given reaction, we will have:
![K=\frac{[N_2O]^2}{[N_2]^2[O_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BN_2O%5D%5E2%7D%7B%5BN_2%5D%5E2%5BO_2%5D%7D)
As N2O is the product whereas N2 and O2 are reactants; thus, the equilibrium expression will be A.
Regards!
Answer:
<span>Chlorine (Cl) is the oxidizing agent because it gains an electron.
Explanation:
Reaction is as follow,
</span><span> Cl</span>₂<span> (aq) + 2 Br</span>⁻<span> (aq) </span>→ <span> 2Cl(aq) + Br</span>₂ <span>(aq)
Oxidation Reaction:
2 Br</span>⁻ → Br₂ + 2 e⁻
Two atoms of Br⁻ (Bromide) looses two electrons to form Br₂ molecule. Hence it is oxidized and is acting as reducing agent.
Reduction Reaction:
Cl₂ + 2 e⁻ → 2 Cl⁻
One molecule of Cl₂ gains two electrons to form two chloride ions (Cl⁻). Therefore, it is reduced and has oxidized Br⁻, Hence, acting as a oxidizing agent.