When you add them together you get 238.
Answer:
The correct option is A.
Step-by-step explanation:
Domain:
The expression in the denominator is x^2-2x-3
x² - 2x-3 ≠0
-3 = +1 -4
(x²-2x+1)-4 ≠0
(x²-2x+1)=(x-1)²
(x-1)² - (2)² ≠0
∴a²-b² =(a-b)(a+b)
(x-1-2)(x-1+2) ≠0
(x-3)(x+1) ≠0
x≠3 for all x≠ -1
So there is a hole at x=3 and an asymptote at x= -1, so Option B is wrong
Asymptote:
x-3/x^2-2x-3
We know that denominator is equal to (x-3)(x+1)
x-3/(x-3)(x+1)
x-3 will be cancelled out by x-3
1/x+1
We have asymptote at x=-1 and hole at x=3, therefore the correct option is A....
Option A: The sum for the infinite geometric series does not exist
Explanation:
The given series is 
We need to determine the sum for the infinite geometric series.
<u>Common ratio:</u>
The common difference for the given infinite series is given by

Thus, the common difference is 
<u>Sum of the infinite series:</u>
The sum of the infinite series can be determined using the formula,
where 
Since, the value of r is 3 and the value of r does not lie in the limit 
Hence, the sum for the given infinite geometric series does not exist.
Therefore, Option A is the correct answer.
Answer:
30-60-90 triangle rule
x=16
Step-by-step explanation:
8 = given
8
= y
8*2= 16 = x
(2x)
Answer:

Step-by-step explanation:
we have

Let


Exchange variables x for y and y for x

Isolate the variable y



Let

-------> inverse function