1
:x
2
+y
2
−6x−9y+13=0
(x−3)
2
+(y−
2
9
)
2
−9−
4
81
+13=0
(x−3)
2
+(y−
2
9
)
2
=
4
65
Here,
r
1
=
2
65
C
1
=(3,
2
9
)
Equation of another circle-
S
2
:x
2
+y
2
−2x−16y=0
(x−1)
2
+(y−8)
2
−1−64=0
(x−1)
2
+(y−8)
2
=65
Here,
r
2
=
65
C
2
=(1,8)
Distance between the centre of two circles-
C
1
C
2
=
(3−1)
2
+(8−
2
9
)
2
C
1
C
2
=
4+
4
49
=
2
65
∣r
2
−r
1
∣=
∣
∣
∣
∣
∣
∣
65
−
2
65
∣
∣
∣
∣
∣
∣
=
2
65
∵C
1
C
2
=∣r
1
−r
2
∣
Thus the two circles touches each other internally.
Since the circle touches each other internally. The point of contact P divides C
1
C
2
externally in the ratio r
1
:r
2
, i.e.,
2
65
:
65
=1:2
Therefore, coordinates of P are-
⎝
⎜
⎜
⎜
⎜
⎜
⎛
1−2
1(1)−2(3)
,
1−2
1(8)−2(
2
9
)
⎠
⎟
⎟
⎟
⎟
⎟
⎞
=(5,1)
Therefore,
Equation of common tangent is-
S
1
−S
2
=0
(5x+y−6(
2
x+5
)−9(
2
y+1
)+13)−(5x+y−2(
2
x+5
)−16(
2
y+1
))=0
2
−6x−9y−13
+x+8y+13=0
4x−7y−13=0
Hence the point of contact is (5,1) and the equation of common tangent is 4x−7y−13=0.
Answer:
Step-by-step explanation:
Aromatic amine is generally less nucleophilic than aliphatic amine because of the aromatic delocalisation of the lone pair. Ketones are also less reactive compared to aldehyde and Reaction between aromatic amine and aromatic ketone is possible leading to the formation of Schiff's base in aqeous ethanoic solution.
d=-5.5 should be the answer
Not really, is this a rhetorical question? lol
Answer: This one is D.110! ☺️