1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alinara [238K]
4 years ago
10

IF:

Mathematics
1 answer:
castortr0y [4]4 years ago
4 0
So they go up and first they double then triple etc do the answer would be 3050
You might be interested in
What number sentence is true?
meriva
D would be true because if you think about it in percentage wise
2/8= 25%
2/3=66.66%
2/3 is automatically greater than 2/8
Hope this helps :)
5 0
3 years ago
Simplify the following <br>(1 1/2) ^-2​
Serjik [45]

Answer:

1/2.25 or 4/9

Step-by-step explanation:

6 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Forty gallons of a 60% acid solution is obtained by mixing a 75% solution with a 50% solution. How many gallons of each solution
Novay_Z [31]
Sry but I don’t know the answer I just have two answer 2 questions so I don’t have to watch a video
7 0
3 years ago
Simplify : (√x + √y ) (√x − √y) (x + y)(x2 + y2)
Ivan

Solution, \mathrm{Expand}\::\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(x+y\right)\left(x^2+y^2\right):\quad :x^4-:y^4

Steps:

\mathrm{Expand}\:\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right):\quad x-y, =\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)

\mathrm{Expand}\:\left(x-y\right)\left(x+y\right):\quad x^2-y^2, =:\left(x^2-y^2\right)\left(x^2+y^2\right)

\mathrm{Expand}\:\left(x^2-y^2\right)\left(x^2+y^2\right):\quad x^4-y^4, =:\left(x^4-y^4\right)

\mathrm{Expand}\::\left(x^4-y^4\right):\quad :x^4-:y^4, =:x^4-:y^4

The correct answer is <u><em>x^4-y^4</em></u>

Hope this helps!!!

4 0
3 years ago
Other questions:
  • List all integers between −100 and 100 that are congruent to −1 modulo 25.
    7·1 answer
  • There are (4^9)^5 •4^0 books are the library. What is the total number of books at the library?
    10·1 answer
  • You are stuck at home watching people walk down the street. Assuming half the people are wearing black shoes, 1/3 are wearing wh
    9·1 answer
  • Which of the following statements are true? Select all that apply
    14·1 answer
  • A study investigated the effectiveness of meditation training in reducing trait anxiety. The study evaluated subjects trait anxi
    6·1 answer
  • Which inequality is true? Use the number line to help.
    15·1 answer
  • Answer truthfully pleaseeeeee
    6·1 answer
  • There are 6 triangles and 2 circles. What is the simplest ratio of circles to total shapes?
    15·1 answer
  • Need help plz help plz
    11·1 answer
  • HEJEKEKFLSKSLCBDMLDgbnnbvgfknfnfkskskfjgjdkwkdjdkdkdkdjdks
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!