Answer:
A) The net force
Explanation:
If two forces of equal strength act on an object in opposite directions, the forces will cancel, resulting in a net force of zero and no movement.
Answer:

Explanation:
The equation of the position is:

Where:
v(i) is the initial velocity
The initial position y(i) will be zero and the final position y = 3.60 m.
So, we just need to solve this equation for v(i).



Therefore, the initial velocity is 10.10 m/s upwards.
I hope it helps you!
Ernest Rutherford
don't know the age sorry
= (3,760 joule/sec) / (4,000 joule/sec)
= 3,760 / 4,000 = 0.94 = 94%
Answer:
a) The object must have constant velocity.
d) The object must have zero acceleration.
Explanation:
We can solve the problem by using Newton's second law, which states that the net force acting on an object is equal to the product between mass and acceleration:

where
F is the net force
m is the mass of the object
a is the acceleration
In this problem, the net force on the object is zero:
F = 0
This means that the acceleration of the object is also zero, according to the previous equation:
a = 0
So statement (d) is correct. Moreover, acceleration is defined as the rate of change of velocity:

Which means that
, so the velocity is constant. Therefore, statement (a) is also correct. The other two statements are false because:
b)The object must be at rest. --> false, the object can be moving at constant velocity, different from zero
c)The object must be at the origin. --> false, since the object can be in motion