Answer:
The displacement of the volleyball is 2.62 m
Explanation:
Given;
initial velocity of the volleyball, u = 7.5 m/s
final velocity of the volleyball, v = 2.2 m/s
displacement of the volleyball, d = ?
Apply the following kinematic equation;
v² = u² - 2gd
2gd = u² - v²

Therefore, the displacement of the volleyball is 2.62 m
While riding in a hot air balloon,
which is steadily at a speed of 1.01 m/s, and your phone accidentally falls.
<span>(a)
</span>The
speed of your phone after 4 s is:
V= u +
at
V= 1.01
+ (9.8)(4)
V=
40.21 m/s
<span>(b)
</span>The balloon
is ____ far:
V = u +
at
V= 1.01
+ (9.8)(1)
V=10.81
–distance at 1 one second
V= u +
at
V= 1.01
+ (9.8)(2)
V= 20.61-distance
at 2 seconds
V= u+ at
V=
30.41- distance at 3 seconds
V=
40.21- distance at 4 seconds
D=
102.04 m
<span>(c)
</span>If the
balloon is rising steadily at 1.01 m/s:
V= -1.1
m/s
<span> </span>
4 because it’s is the highest one hope it helps
uhhhh idk cheif...
thats a big oof right there.
ged is always an option