Answer:
d. 100.0 J
Explanation:
To solve this problem we must use the theorem of work and energy conservation. This tells us that the mechanical energy in the final state is equal to the mechanical energy in the initial state plus the work done on a body. In this way we come to the following equation:
E₁ + W₁₋₂ = E₂
where:
E₁ = mechanical energy at state 1. [J] (units of Joules)
E₂ = mechanical energy at state 2. [J]
W₁₋₂ = work done from 1 to 2 [J]
We have to remember that mechanical energy is defined as the sum of potential energy plus kinetic energy.
The energy in the initial state is zero, since there is no movement of the hockey puck before imparting force. E₁ = 0.
The Work on the hockey puck is equal to:
W₁₋₂ = 100 [J]
100 = E₂
Since the ice rink is horizontal there is no potential energy, there is only kinetic energy
Ek = 100 [J]
It can be said that the work applied on the hockey puck turns into kinetic energy
As we presume that the fluid density is greater than the gas density based on common sense, the volume of the balloon decreases. The mass per unit volume is known as fluid density.
Greek letter stands in for and (rho). Mass per length squared, or M/L3, is the unit of measurement for density. Specific Weight vs. Weight Density: A fluid density, also known as specific density, is determined by dividing the fluid's weight by its volume. Weight per volume of a fluid is also referred to as weight density.
A mathematical term called "volume" describes how much three-dimensional space is occupied by an item or a closed surface. The measurement of volume is done in cubic units, like m3, cm3, in3, etc.
Learn more about fluid density here
brainly.com/question/24620628
#SPJ4
Answer:
hope
that helps
Explanation:
D. The sleeper's heart rate, blood pressure, and breathing rate drop to their lowest levels.
But the fact is that an accelerating object is an object that is changing it’s velocity.. for this reason , it can be safely concluded that an object moving in a circle at constant speed is indeed accelerating. It is accelerating because the direction of the velocity vector is changing .
Answer:
<em>10.09 units</em>
Explanation:
For the A
Ax = -8.0 units
Ay = 6.0 units
The resultant vector = Ra =
Ra =
= 10 units
For B
Bx = 1.0 units
By = -1.0 units
The resultant vector = Rb =
Rb =
=
units
Adding these two vectors A and B together, magnitude of vector R is
R = 
R =
= <em>10.09 units</em>