Answer:
Answer would be C because combustion does the process of heat. Oxygen is a reactant in a combination reaction, which always produces energy in the form of heat and light. Carbon burns in the presence of oxygen to give carbon dioxide.
Answer:
4.981 MeV
Explanation:
The quantity of energy Q can be calculated using the formula
Q = (mass before - mass after) × c²
Atomic Mass of thorium = 232.038054 u, atomic of Radium = 228.0301069 u and mass of Helium = 4.00260. The difference of atomic number and atomic mass between the thorium and radium ( 232 - 228) and ( 90 - 88) show α particle was emitted.
1 u = 931.494 Mev/c²
Q = (mass before - mass after) × c²
Q = ( mass of thorium - ( mass of Radium + mass of Helium ) )× c²
Q = 232.038054 u - ( 228.0301069 + 4.00260) × c²
Q = 0.0053471 u × c²
replace 1 u = 931.494 MeV/ c²
Q = 0.0053471 × c² × (931.494 MeV / c²)
cancel c² from the equation
Q = 0.0053471 × 931.494 MeV = 4.981 MeV
Answer:
Exothermic reactions increase the entropy of the surroundings. Simply put, entropy measures the dispersal of energy. Since ΔH is negative in an exothermic reaction, this must mean that ΔS will take on a positive value, indicating an increase in entropy.
Answer: The square root of Pi is 1.77245.
Please mark as brainliest