Speed = (wavelength) x (frequency
Speed = (.020 m) x (5 / sec)
Speed = 0.1 m/s
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)
3 rd one because I had this on my test
(a) At its maximum height, the ball's vertical velocity is 0. Recall that

Then at the maximum height
, we have


(b) The time the ball spends in the air is twice the time it takes for the ball to reach its maximum height. The ball's vertical velocity is

and at its maximum height,
so that


which would mean the ball spends a total of about 5.6 seconds in the air.
(c) The ball's horizontal position in the air is given by

so that after 5.6 seconds, it will have traversed a displacement of

