Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
![\left[0,\dfrac2n\right],\left[\dfrac2n,\dfrac4n\right],\left[\dfrac4n,\dfrac6n\right],\ldots,\left[\dfrac{2(n-1)}n,2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac2n%5Cright%5D%2C%5Cleft%5B%5Cdfrac2n%2C%5Cdfrac4n%5Cright%5D%2C%5Cleft%5B%5Cdfrac4n%2C%5Cdfrac6n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7B2%28n-1%29%7Dn%2C2%5Cright%5D)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,

where
. Each interval has length
.
At these sampling points, the function takes on values of

We approximate the integral with the Riemann sum:

Recall that

so that the sum reduces to

Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:

Just to check:

Area of a trapezoid is found with the formula, A=(a+b)/2 x h.
F(x) is a quadratic. The y intercept, therefore, is equal to the c value.
The y intercept here is -4.
For g(x), you can tell that the y intercept is 0 because that's the value of y when the x value is 0.
For h(x), the chart specifies that when x=0, y=-2, so the y intercept is -2.
Of these three values, 0 is the largest.
Final answer: g(x)
This type of parabola opens either to the left or to the right. The negative makes it open to the left.
Answer:
1
Step-by-step explanation: