1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nat2105 [25]
4 years ago
8

The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 6 minutes. Assu

me a person has waited for at least 4 minutes to be served. What is the probability that the person will need to wait at least 9 minutes total
Mathematics
1 answer:
denis-greek [22]4 years ago
8 0

Answer:

43.46% probability that the person will need to wait at least 9 minutes total

Step-by-step explanation:

To solve this question, we need to understand conditional probability and the exponential distribution.

Conditional probability:

We use the conditional probability formula to solve this question. It is

P(B|A) = \frac{P(A \cap B)}{P(A)}

In which

P(B|A) is the probability of event B happening, given that A happened.

P(A \cap B) is the probability of both A and B happening.

P(A) is the probability of A happening.

Expontial distribution:

The exponential probability distribution, with mean m, is described by the following equation:

f(x) = \mu e^{-\mu x}

In which \mu = \frac{1}{m} is the decay parameter.

The probability that x is lower or equal to a is given by:

P(X \leq x) = \int\limits^a_0 {f(x)} \, dx

Which has the following solution:

P(X \leq x) = 1 - e^{-\mu x}

The probability of finding a value higher than x is:

P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}

In this question:

Event A: Waited at least 4 minutes.

Event B: Waiting at least 9 minutes.

The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 6 minutes.

This means that m = 6, \mu = \frac{1}{6}

Probability of waiting at least 4 minutes.

P(A) = P(X \geq 4) = P(X > 4)

P(A) = P(X > 4) = e^{-\frac{4}{6}} = 0.5134

Intersection:

The intersection between a waiting time of at least 4 minutes and a waiting time of at list 9 minutes is a waiting time of 9 minutes. So

P(A \cap B) = P(X > 9) = e^{-\frac{9}{6}} = 0.2231

What is the probability that the person will need to wait at least 9 minutes total

P(B|A) = \frac{0.2231}{0.5134} = 0.4346

43.46% probability that the person will need to wait at least 9 minutes total

You might be interested in
Answer the thing on screen. Make sure to use the right < or > thing
BlackZzzverrR [31]

Answer:

12 \leq v

Step-by-step explanation:

first you subtract 7 from 7 and 12

19\leq v+ 7\\-7           -7

then you get 19 \leq v

(btw the variable always goes first with these problems)

so the final answer would be v \geq 12

3 0
3 years ago
The measure of angle B is 68 degrees. What is the measure of its supplementary angle?
deff fn [24]

112

suplementry angle add to 180 so 180_68=112

8 0
2 years ago
You can do one half of a job in an hour. Your friend can do one third of the same job in an hour. How long will it take to do th
babymother [125]
Three hours because one third in an hour and there are three thirds to make one whole job so it is 3 hours
4 0
4 years ago
Read 2 more answers
I know this is a hard question, but what is 1 + 1?
Nikitich [7]

Answer:

The answer is 2

Step-by-step explanation:

Brainliest please

7 0
3 years ago
Read 2 more answers
Calculate a point estimate of the mean pull-off force of all connectors in the population (Round the answer to four decimal plac
UkoKoshka [18]

Answer:

The answer is "75.627"

Step-by-step explanation:

Please find the correct question in the attached file.

The mean displacement force among all connectors throughout the population calculates the point estimation.

\bold{ \bar x= \frac{\text{Sum of observation}}{\text{Amount of observations}}}

   = \frac{1966.88}{26}\\\\=75.627

8 0
4 years ago
Other questions:
  • Do 1/3 and 2/6 name the same part of one whole?
    11·1 answer
  • Identify the transformations needed to graph the cosine function y = –0.5cos(x) – 3 from the parent cosine function. Check all t
    6·2 answers
  • terry collected data to to study her ice cream shop sales. the graph below shows how much ice cream was sold the first week of j
    15·1 answer
  • Which set of side lengths can form a triangle? a 6cm, 8cm, 18cm b 6cm, 8cm, 10cm c 6cm, 7cm, 14cm d 6cm, 7cm, 20cm
    11·2 answers
  • What is the area of the figure ​
    10·1 answer
  • Which polynomial matches the expression -x(x – 5)?
    11·1 answer
  • I need help with this! (slope)
    14·1 answer
  • !Can some1 help! !Help FAST!
    10·2 answers
  • Please help meeeeeeeeeeeee
    15·1 answer
  • Students at a school will sell hats to raise money. There are some hats left over from last year, and 20 boxes of hats will be o
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!