The argument is valid by the law of syllogism.
Answer:
2, -3
Step-by-step explanation:
4 units down is -9, then a reflection over y axis makes -2 2 6 units up makes -9 -3
The answer is 7.07 times, with rounding, still 7.07.
Answer:
Point (2, 20) does not lie on the given curve.
Step-by-step explanation:
Let us see explanation:
![f(x) = 2. \: {5}^{x} \\ \\ \therefore \: f(x) \: at \: x = 2 \\ f(2) = 2. {5}^{2} = 2.25 = 50 \\ \\ hence \: at \: x = 2 \: \: f(x) = 50 \\ \therefore \:point (2 \: \: 20) \: does \: not \: lie \: on \: the \: \\ \: \: \: \: \: curve.](https://tex.z-dn.net/?f=f%28x%29%20%3D%202.%20%5C%3A%20%20%7B5%7D%5E%7Bx%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20f%28x%29%20%5C%3A%20at%20%5C%3A%20x%20%3D%202%20%5C%5C%20f%282%29%20%3D%202.%20%7B5%7D%5E%7B2%7D%20%20%3D%202.25%20%3D%2050%20%5C%5C%20%20%5C%5C%20hence%20%5C%3A%20at%20%5C%3A%20x%20%3D%202%20%5C%3A%20%20%5C%3A%20f%28x%29%20%3D%2050%20%5C%5C%20%20%5Ctherefore%20%5C%3Apoint%20%282%20%5C%3A%20%20%5C%3A%2020%29%20%5C%3A%20does%20%5C%3A%20not%20%5C%3A%20lie%20%5C%3A%20on%20%5C%3A%20the%20%5C%3A%20%5C%5C%20%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20curve.)
Yes! Yup your right! Congrats yup!