The answer is B because the domain is the x value, and because the lines have arrows they continue forever, meaning that they contain all real numbers.
Answer:
16428 oranges
Explanation:
Total yield = number of trees × number of oranges in each tree
Initial yield = 600×24= 14400 oranges
To find the equation needed, let x = additional trees and y= total yield
Number of trees = 24 +x
Number of oranges in each tree = 600-12x
Equation of total yield y= (24+x)(600-12x)
y= 14400-288x+600x-12x²
y= -12x²+312x+14400
Using a graphing calculator, from the graph drawn for this quadratic equation, we notice that it is a parabola. Therefore to find the maximum value, we should find the maximum point which is at the vertex of the parabola, we use the formula x= -b/2a
A quadratic equation is such: ax²+bx+c
Therefore x =-312/2×-12
x= -312/-24
x= 13
So we can conclude that in order to maximise oranges from the trees, the person needs to plant an additional 13 trees. Substituting from the above:
24+x=24+13= 37 trees in total
y= -12x²+312x+14400= -12×13²+312×13+14400= -2028+4056+14400
=16428 oranges in total yield
Answer is 34.96$ for the final cost.
The correct formula would be C
multiply principle ( $800) by (1+interest rate as a decimal) to the power of number of years
so you would have 800 x (1+0.03)^7
Answer:
221
Step-by-step explanation:
area= length times width
13 times 17= 221