Following the graph as listed we can immidiately say that (1/2,-2) & (-2,-8) must be wrong. This can be seen by the fact that the line's don't intersect in quadrants 1 & 4. It also cannot be greater than -2 or y would not =-2. Thus it must be (-1/2,-2) or (-2,1/2) and because we know they don't intersect in quadrant two, t<u>he correct answer must be (-1/2,-2)</u>. So the last answer is correct for the intersection point.
<em>TLDR: (-1/2,-2) is the correct answer. </em>
<em />
This equation is unsolvable.
x^2+8x+16=0
(x+4)^2+9=0
(x+4)^2= -9
anything to the power of whatever has to be greater than -1, it means it can be 0 or more but never a negative number. If it is a negative number, then it is false.
For this Q:
mean=31
st.dev.=0.8
x=32
Calculate z-score:
z=(x-m)/s = (32-31)/0.8=1.25
This z-score value corresponding to the probability of 0.8944
<span />
Answer: 10+.6
Step-by-step explanation: be more specific
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)