Answer:
<h2>There are 3,921,225 ways to select the winners.</h2>
Step-by-step explanation:
This problem is about combinations with no repetitions, because the same person can't win four times. It's a combinaction because the order of winning doesn't really matter.
Combinations without repetitions are defined as

Where
and
.
Replacing values, we have

Therefore, there are 3,921,225 ways to select the winners.
Additionally, as you can imagine, the probability of winning is extremely low, it would be 3,921,225 to 1.
Answer:
See explanation
Step-by-step explanation:
Let x be the number of simple arrangements and y be the number of grand arrangements.
1. The florist makes at least twice as many of the simple arrangements as the grand arrangements, so

2. A florist can make a grand arrangement in 18 minutes
hour, then he can make y arrangements in
hours.
A florist can make a simple arrangement in 10 minutes
hour, so he can make x arrangements in
hours.
The florist can work only 40 hours per week, then

3. The profit on the simple arrangement is $10, then the profit on x simple arrangements is $10x.
The profit on the grand arrangement is $25, then the profit on y grand arrangements is $25y.
Total profit: $(10x+25y)
Plot first two inequalities and find the point where the profit is maximum. This point is point of intersection of lines
and 
But this point has not integer coordinates. The nearest point with two integer coordinates is (126,63), then the maximum profit is

The answer is A) <span>Increasing: x < 7; decreasing: x > 7</span>
Answer:65739
Step-by-step explanation: because it has to be 65739 because it is the best possible answer