Answer:
{d,b}={4,3}
Step-by-step explanation:
[1] 11d + 17b = 95
[2] d + b = 7
Graphic Representation of the Equations :
17b + 11d = 95 b + d = 7
Solve by Substitution :
// Solve equation [2] for the variable b
[2] b = -d + 7
// Plug this in for variable b in equation [1]
[1] 11d + 17•(-d +7) = 95
[1] -6d = -24
// Solve equation [1] for the variable d
[1] 6d = 24
[1] d = 4
// By now we know this much :
d = 4
b = -d+7
// Use the d value to solve for b
b = -(4)+7 = 3
Solution :
{d,b} = {4,3}
Answer:
See below
Step-by-step explanation:
<u>Parent function:</u>
<u>Transformed function:</u>
- y = 4(3)⁻²ˣ⁺⁸ + 6, (note. I see this as 8, sorry if different but it doesn't make any change to transformation method)
<u>Transformations to be applied:</u>
- f(x) → f(-x) reflection over y-axis
- f(-x) → f(-2x) stretch horizontally by a factor of 2
- f(-2x) → f(-2x + 8) translate 8 units right
- f(-2x + 8) → 4f(-2x + 8) stretch vertically by a factor of 4
- 4f(-2x + 8) → 4f(-2x + 8) + 6 translate 6 units up
(0,-4) um yeah i dont know
Answer:
Option D
Step-by-step explanation:
A type I error occurs when you reject the null hypothesis when it is actually true.
The null hypothesis in this case is minimum breaking strength is less than or equal to 0.5.
A type one error would be allowing the production process to continue when the true breaking strength is below specifications.