Manipulated variable: the types of soil
Responding variable: how much t the plants grow
First write the molecular equation with states:
(NH4)2S (aq) + 2AgNO3(aq) → Ag2S (s) + 2NH4NO3
Now write a full ionic equation by separating into ions all substances that dissociate: anything (s) (g) or (l) does not dissociate
2NH4 + (aq) + S 2-(aq) + 2Ag+ (aq) + 2NO3- (aq) → Ag2S(s) + 2NH4 + (aq) + 2NO3- (aq)
To write the NET IONIC equation, inspect the full ionic equation above and delete anything that appears on both sides of the → sign:
Net ionic equation:
S 2-(aq) + 2Ag + (aq) → Ag2S(s)
a) The total pressure of the system is 1.79 atm
b) The mole fraction and partial pressure of hydrogen is 0.89 and 1.59 atm respectively
c) The mole fraction and the partial pressure of argon is 0.11 and 0.19 atm.
<h3>What is the total pressure?</h3>
We know tat we can be able to obtain the total pressure in the system by the use of the ideal gas equation. We would have from the equation;
PV = nRT
P = pressure
V = volume
n = Number of moles
R = gas constant
T = temperature
Number of moles of hydrogen = 14.2 g/2g = 7.1 moles
Number of moles of Argon = 36.7 g/40 g/mol
= 0.92 moles
Total number of moles = 7.1 moles + 0.92 moles = 8.02 moles
Then;
P = nRT/V
P = 8.02 * 0.082 * 273/100
P = 1.79 atm
Mole fraction of hydrogen = 7.1/8.02 = 0.89
Partial pressure of hydrogen = 0.89 * 1.79 atm
= 1.59 atm
Mole fraction of argon = 0.92 / 8.02
= 0.11
Partial pressure of argon = 0.11 * 1.79 atm
= 0.19 atm
Learn more about partial pressure:brainly.com/question/13199169
#SPJ1