People who work with radioactive materials often wear a film badge to reveal how much radiation they have been exposed to. The film badge dosimeter or the film badge is a dosimeter worn by these people working with materials that are radioactive for the purpose of monitoring cumulative radiation dose due to ionizing radiation. The badge has two parts; the photographic film, and a holder.
Explanation:
To solve this problem, follow these steps;
- Obtain a balanced equation of the reaction and familiarize with the reactants and products.
- Find the number of moles of the reacting species since they are the known matter in terms of quantity.
- From the number of moles, determine the limiting reactant.
- The limiting reactant is the one given in short supply.
- Such reactant determines the extent of the reaction.
- Compare the moles of this specie to that of the products using the balanced equation.
- Obtain the mole of the desired product and find the mass or desired quantity.
- simply work from the known specie to the unknown
learn more:
Number of moles brainly.com/question/13064292
#learnwithBrainly
Answer & Explanation:
The reason why is because global fossil fuel consumption is on the rise, and new reserves are becoming harder to find. Those that are discovered are significantly smaller than the ones that have been found in the past.
Oil: Consumption (Predictions): Over 11 Billion tonnes Annually. If we carry on as we are, our known oil deposits could run out in just over 53 years.
Gas (Predictions): If we increase gas production to fill the energy gap left by oil, our known gas reserves only give us just 52 years left.
Coal: Although it’s often claimed that we have enough coal to last hundreds of years, this doesn’t take into account the need for increased production if we run out of oil and gas, our known coal deposits could be gone in 150 years.
For example, oil reserves are a good example: 16 of the 20 largest oil fields in the world have reached peak level production – they’re simply too small to keep up with global demand.
During the year of 2015, fossil fuels made up 81.5% of total U.S. energy consumption. The number is most likely increasing every year.
(fyi: the graph provided is showing future energy reserves for coal, gas and oil. approxiamately.)
Answer:
What type of bonds are shown in this diagram?
A: covalent bonds
B: ionic bonds
C: hydrogen bonds
D: metallic bonds
(answer) metallic bonds
In what type of bonds do atoms join together because their opposite charges attract each other?
A: metallic bonds and covalent bonds
B: metallic bonds and ionic bonds
C: ionic bonds and covalent bonds
D: ionic bonds and hydrogen bonds
(answer) ionic bonds and hydrogen bonds
What types of bonds are shown in this diagram?
A: covalent bonds
B: ionic bonds
C: hydrogen bonds
D: metallic bonds
(answer) hydrogen bonds
Which statement best describes the types of bonds shown in the diagram?
A: an ionic bond; the hydrogen chloride molecule has an electrical charge
B: an ionic bond; a hydrogen ion is bonding with a chlorine atom
C: a covalent bond; the hydrogen atom’s two electrons are being shared with the chlorine atom
D: a covalent bond; the hydrogen atom’s single electron is being shared with the chlorine atom
(answer) a covalent bond; the hydrogen atom’s single electron is being shared with the chlorine atom
Which of the following bonds is the strongest?
A: hydrogen bonds
B: metallic bonds
C: valence bonds
D: covalent bonds
(answer)
Explanation:
UwU