Answer:
x = 4, TU = 22
Step-by-step explanation:
Given that TS bisects TU at Q , then
TQ = QU , substitute values
5x - 9 = 15 - x ( add x to both sides )
6x - 9 = 15 ( add 9 to both sides )
6x = 24 ( divide both sides by 6 )
x = 4
Thus
TU = 5x - 9 + 15 - x = 4x + 6 = 4(4) + 6 = 16 + 6 = 22
Answer:
-8
Step-by-step explanation:
I looked it up on ma th way like the previous user said and got -8.
<em>Solu</em><em>tion</em><em>:</em>
<em>hypotenuse</em><em>=</em><em>p</em>
<em>perpe</em><em>ndicular</em><em>=</em><em>m</em>
<em>base</em><em>=</em><em>n</em>
<em>According</em><em> </em><em>to</em><em> </em><em>Pythagoras</em><em> </em><em>theorem</em><em>,</em>
<em>h^</em><em>2</em><em>=</em><em>p^</em><em>2</em><em>+</em><em>b</em><em>^</em><em>2</em>
<em>So</em><em> </em><em>the</em><em> </em><em>right </em><em>an</em><em>swer</em><em> </em><em>of</em><em> </em><em>you</em><em>r</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>m^</em><em>2</em><em>+</em><em>n^</em><em>2</em><em>=</em><em>p^</em><em>2</em>
<em>Right</em><em> </em><em>ans</em><em>wer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>A</em><em>.</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
To construct a perpendicular bisector, we have to draw two arcs using each of the endpoints as centers
<h3>What is a perpendicular bisector?</h3>
A perpendicular bisector is said to be a line that intersects the segment of another line perpendicularly and also divides it into two equal parts.
The properties of a perpendicular bisector include:
- It divides a line segment into two equal parts
- It makes right angles with the line segment.
- Points in the perpendicular bisector are equal from the line of the segment.
Hence, all the mentioned properties are correct except that to construct it, we have to draw two arcs using each of the endpoints as centers.
Learn more about perpendicular bisector here:
brainly.com/question/21752287
#SPJ1
Answer:
ok, what grade level? and you need to actually type the questions into here