area = length times width
area = 2 meters * 3 meters
area = 6 m^2
The missing term is -1155.
Step-by-step explanation:
Given expression is
68 * 27 - 81 + ? = 600
Let the missing term be x

Subtracting 1755 from both sides

Therefore,
The missing term is -1155.
Keywords: multiplication, addition
Learn more about multiplication at:
#LearnwithBrainly
Answer:
Yes
Step-by-step explanation:
The formula for area of a triangle is A = (1/2)bh,
For the first triangle we can leave it in general terms, so it's area is
A = (1/2)bh, depending on what b and h are, but it doesn't matter here...
The second triangle has base that is twice the other triangles base. Bases being multiples of each other is the definition of being proportional so the bases are proportional, an the area of the second triangle is
A = (1/2)(2b)h, which simplifies to
A = bh
Comparing the 2 areas, you can see that one has a multiplier of (1/2), so their areas are proportional
27.034%
Let's define the function P(x) for the probability of getting a parking space exactly x times over a 9 month period. it would be:
P(x) = (0.3^x)(0.7^(9-x))*9!/(x!(9-x)!)
Let me explain the above. The raising of (0.3^x)(0.7^(9-x)) is the probability of getting exactly x successes and 9-x failures. Then we shuffle them in the 9! possible arrangements. But since we can't tell the differences between successes, we divide by the x! different ways of arranging the successes. And since we can't distinguish between the different failures, we divide by the (9-x)! different ways of arranging those failures as well. So P(4) = 0.171532242 meaning that there's a 17.153% chance of getting a parking space exactly 4 times.
Now all we need to do is calculate the sum of P(x) for x ranging from 4 to 9.
So
P(4) = 0.171532242
P(5) = 0.073513818
P(6) = 0.021003948
P(7) = 0.003857868
P(8) = 0.000413343
P(9) = 0.000019683
And
0.171532242 + 0.073513818 + 0.021003948 + 0.003857868 + 0.000413343
+ 0.000019683 = 0.270340902
So the probability of getting a parking space at least four out of the nine months is 27.034%