The statement is false, as the system can have no solutions or infinite solutions.
<h3>
Is the statement true or false?</h3>
The statement says that a system of linear equations with 3 variables and 3 equations has one solution.
If the variables are x, y, and z, then the system can be written as:

Now, the statement is clearly false. Suppose that we have:

Then we have 3 parallel equations. Parallel equations never do intercept, then this system has no solutions.
Then there are systems of 3 variables with 3 equations where there are no solutions, so the statement is false.
If you want to learn more about systems of equations:
brainly.com/question/13729904
#SPJ1
Answer:
x = 4, y = 2
Step-by-step explanation:
Start by multiplying the first equation by 2:
2x + 2y = 12 --> 4x + 4y = 24
Subtract the second from the first:
4x + 4y = 24
- 5x + 4y = 28
4x - 5x = -x
4y = 4y = 0
24 - 28 = -4
so you end with -x + 0 = -4
Solve for x to get x = 4
Plug x = 4 back into 2x + 2y = 12 to find y.
2(4) + 2y = 12
8 + 2y = 12
2y = 4
y = 2
I think it is possibly point b
Answer:

Meaning: If the company sells -5 shirts, they would make a profit of -150 dollars. This interpretation of loss in the context of the problem

Meaning: If the company sells 7 shirts, they would make a profit of -30 dollars. This interpretation of loss in the context of the problem

Meaning: If the company sells 10.5 shirts, they would make a profit of 5 dollars. This interpretation of profit in the context of the problem
Step-by-step explanation:
Given

Required
Fill in the gap









Given:
• Total number of cans collected = 150
,
• Percent of cans that were soda = 58%
Let's find the number of other cans he collected.
To find the number of other cans, since the percent of soda is 58%, let's find the pecent of other cans.
Percent of other cans = 100% - 58% = 42%
The percent of other cans collected was 42%.
Now, to find the number of other cans collected, let's find 42% of the total number of cans collected 150.
We have:

Therefore, the number of other cans collected is 63 cans.
ANSWER:
63 cans