1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melomori [17]
3 years ago
9

Please help fast......

Mathematics
1 answer:
Tom [10]3 years ago
5 0

3)

\begin{array}{c|c}\underline{Statement}&\underline{Reason}\\ 1.AY=BX&\text{1. Given}\\ 2.AB \cong AB&\text{2. Reflexive Property}\\ 3. AD || BC&\text{3. Property of a square}\\ 4. \angle ABE \cong \angle AXB&\text{4. Alternate Interior Angles}\\ 5. \angle BAY \cong \angle BYA&\text{5. Alternate Interior Angles}\\6. \triangle BAX \cong \triangle ABY&\text{6. Angle-Side-Angle Theorem}\\ 7. AX \cong BY&\text{7. CPCTC}\\\end{array}

*************************************************************************************

6)

\begin{array}{c|c}\underline{Statement}&\underline{Reason}\\1. AB=CF&\text{1. Given}\\2.AB+BF=A'F&\text{2. Segment Addition Postulate}\\3.CF+BF=A'F&\text{3. Substitution Property}\\4.CF+BF+BC&\text{4. Segment Addition Postulate}\\5.A'F=BC&\text{5. Transitive Property}\\6. \angle AFE = \angle DBC&\text{6. Given}\\7. EF = BD&\text{7. Given}\\8. \triangle AFE \cong \triangle CBD&\text{8. Side-Angle-Side Theorem}\\\end{array}

*************************************************************************************

7)

\begin{array}{c|c}\underline{Statement}&\underline{Reason}\\\text{1.AC bisects }\angle BAD&\text{1. Given}\\2. \angle BAC \cong \angle DAC&\text{2. Property of angle bisector}\\3.AC = AC&\text{3. Reflexive Property}&4. \angle ACB \cong \angle ACD&\text{4. Property of angle bisector}\\5. \triangle ABC \cong \triangle ADC&\text{5. Angle-Side-Angle Theorem}\\6.BC=CD&\text{6. CPCTC}\\\end{array}

You might be interested in
Write the vertex form of the equation of the parabola which has a vertex of (0,0) and contains the point (1,2). A. Y=2x^2. B. Y=
Aleonysh [2.5K]
General equation of parabola:  y-k = a(x-h)^2

Here the vertex is at (0,0), so we have y-0 = a(x-0)^2, or y = ax^2

All we have to do now is to find the value of the coefficient a.

(1,2) is on the curve.  Therefore, 2 = a(1)^2, or 2 = a(1), or a = 2.

The equation of this parabola is y = 2x^2.
5 0
3 years ago
(-7)-(-44)/22+((-4)*59) with calculation
Pavel [41]

Hi,

\frac{ ( - 7) - ( - 44)}{22 + (( - 4) \times 59)}

\frac{  - 7 - ( - 44)}{22 + (( - 4) \times 59}

\frac{ - 7 + 44}{22 + (( - 4) \times 59}

\frac{ - 7 + 44}{22 + ( - 236)}

\frac{37}{22 + ( - 236)}

\frac{37}{22 - 236}

\frac{37}{ - 214}

good look :)

8 0
3 years ago
Read 2 more answers
Ms. Maiden is grading quizzes. She already
shtirl [24]

Answer:

220 hours i believe

7 0
3 years ago
a positive integer is twice another. The sum of the reciprocals of the two positive integers is frac 3/16, find the two integers
gizmo_the_mogwai [7]

Step-by-step explanation:

  • Let x be the smallest integer
  • Let 2x be the larger integer

As the sum of the reciprocals of the two positive integers is frac 3/16

So,

\frac{1}{x}\:+\:\frac{1}{2x}\:=\:\frac{3}{16}

\mathrm{Multiply\:by\:LCM=}16x

\frac{1}{x}\cdot \:16x+\frac{1}{2x}\cdot \:16x=\frac{3}{16}\cdot \:16x

Simplify

24=3x

\mathrm{Switch\:sides}

3x=24

\mathrm{Divide\:both\:sides\:by\:}3

\frac{3x}{3}=\frac{24}{3}

x=8

So,

2x=16

<h2>Verification:</h2>

\frac{1}{8}\:+\:\frac{1}{16}

\mathrm{Least\:Common\:Multiplier\:of\:}8,\:16:\quad 16

=\frac{2}{16}+\frac{1}{16}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

=\frac{2+1}{16}

=\frac{3}{16}

Therefore,

\frac{1}{8}+\frac{1}{16}=\frac{3}{16}

Keywords:  word problem , integer

Learn more about solving integer word problem from brainly.com/question/10905225

#learnwithBrainly

4 0
3 years ago
Determine if the two triangles are congruent. If they are, State how you know. NO LINKS!!!! Show your work. Part 2c​
tankabanditka [31]

Answer:

2.  Not enough information

4. Congruent SAS

4. Similar, not enough information to determine congruency.

Step-by-step explanation:

2.  We only know one side and one angle are congruent,  Not enough to determine congruency

4.  We know two sides and the angle between are vertical angles and vertical angles are congruent.  SAS is how the triangles are congruent.

6.  The three angles are congruent which makes the triangles similar.  We need to know a side if they are to be congruent

7 0
3 years ago
Other questions:
  • What is the area of a square with a radius of 24 cm
    6·1 answer
  • An equation that models the perimeter of the rectangle 2w+4w=36
    13·1 answer
  • What type of conic section is the following equation?<br> 5x^2-y=12
    14·1 answer
  • When can a personal line of credit loan be a better option than using a credit card ?
    9·1 answer
  • Write an equation of the line that passes through (3,1) and (0,10)
    14·1 answer
  • Hello please help me with this problem. For 38 points Its is algebra 1
    13·2 answers
  • Write as a single fraction in it's simplest form:
    9·1 answer
  • I need so much help can anyone help me
    15·1 answer
  • Write the equation of the line passing through the points (25,3) and (-5, -3).
    5·1 answer
  • Consider the Expression
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!