Answer:
S=
2
1
gt
2
........(1)
And that of the other stone is
S=u(t−n)+
2
1
[g(t−n)
2
]........(2)
Since both the stones meet at the distance so equation (1)and equation(2) will be equal
2
1
gt
2
=u(t−n)+
2
1
[g(t−n)
2
]
gt
2
=2ut−2un+gt
2
+gn
2
−2gnt
t(2gn−2u)=gn
2
−2un
t=
(gn−u)
n(
2
gn
−u)
now putting value of t in equation(1)
s=
2
g
⎣
⎢
⎡
gn−u
2
[n(
2
gn
−u)]
⎦
⎥
⎤
2
S=
2
g
⎣
⎢
⎡
(gn−u)
2
n(
2
gn
−u)
⎦
⎥
⎤
Explanation:
plzzz mark me brainliest and follow me
l
i will also follow u
Answer:
60 Ω
Explanation:
R(com) = 15 Ω
1/R(com) = 1/R1 + 1/R2 + 1/R3 ..... + 1/Rn
1/15 = 1/20 + 1/R2
1/R2 = 1/15 - 1/20
1/R2 = (4 - 3) / 60
1/R2 = 1/60
R2 = 60 Ω
así, la combinada de resistencia necesaria es 60 Ω
Answer:
Specific heat of liquid 
Explanation:
We know in thermal equilibrium :
Loss in heat by iron block = Gain in heat by liquid .
Specific heat of iron = 0.45
{ source internet }
Now , loss in heat by iron block = 
Heat gain by liquid=
Equating both we get :

Answer: The incident ray and the reflected ray and the normal will be parallel to each other.
Explanation:
The normal is perpendicular to the surface of the mirror or the reflective surface.
According to the law of reflection which state that:
The angle of incidence is always equal to the angle of reflection on a smooth surface.
If a light ray is incident on a reflective surface along the normal. The angle of incidence will be at 90 degrees which will be perpendicular to the surface of the mirror, the reflected ray will bounce back likewise at the same angle which will be perpendicular to the reflective surface.
Both the incident ray and the reflected ray and the normal will be parallel to each other.